Structure factors describe how incident radiation is scattered from materials such as silicon and germanium and characterize the physical interaction between the material and scattered particles. We used neutron Pendellösung interferometry to make precision measurements of the (220) and (400) neutron-silicon structure factors and achieved a factor-of-four improvement in the (111) structure factor uncertainty. These data provide measurements of the silicon Debye-Waller factor at room temperature and the mean square neutron charge radius square femtometers.
View Article and Find Full Text PDFNeutrons are valuable probes for various material samples across many areas of research. Neutron imaging typically has a spatial resolution of larger than 20 µm, whereas neutron scattering is sensitive to smaller features but does not provide a real-space image of the sample. A computed-tomography technique is demonstrated that uses neutron-scattering data to generate an image of a periodic sample with a spatial resolution of ∼300 nm.
View Article and Find Full Text PDFWe report a 0.08% measurement of the bound neutron scattering length of ^{4}He using neutron interferometry. The result is b=(3.
View Article and Find Full Text PDFActa Crystallogr A Found Adv
November 2019
The construction is described of a monolithic thick-crystal perfect silicon neutron interferometer using an ultra-high-precision grinding technique and a combination of annealing and chemical etching that differs from the construction of prior neutron interferometers. The interferometer is the second to have been annealed after machining and the first to be annealed prior to chemical etching. Monitoring the interference signal at each post-fabrication step provides a measurement of subsurface damage and its alleviation.
View Article and Find Full Text PDFWe demonstrate a three phase-grating moiré neutron interferometer in a highly intense neutron beam as a robust candidate for large area interferometry applications and for the characterization of materials. This novel far-field moiré technique allows for broad wavelength acceptance and relaxed requirements related to fabrication and alignment, thus circumventing the main obstacles associated with perfect crystal neutron interferometry. We observed interference fringes with an interferometer length of 4 m and examined the effects of an aluminum 6061 alloy sample on the coherence of the system.
View Article and Find Full Text PDF