Background: Contact lens discomfort is a symptom-based clinical diagnosis that affects 13% to 75% of contact lens wearers. The Tear Film and Ocular Surface Society defines contact lens discomfort as "a condition characterized by episodic or persistent adverse ocular sensations related to lens wear either with or without visual disturbance, resulting from reduced compatibility between the lens and ocular environment, which can lead to decreased wearing time and discontinuation from lens wear." Signs of the condition include conjunctival hyperemia, corneal and conjunctival staining, altered blinking patterns, lid wiper epitheliopathy, and meibomian gland dysfunction.
View Article and Find Full Text PDFBackground/aims: To examine demographic and clinical factors associated with ocular pain 1 day after refractive surgery.
Methods: Prospective study of individuals undergoing refractive surgery. Participants rated their ocular pain on a 0-10 numerical rating scale (NRS) presurgery and 1 day after surgery.
Some patients develop persistent eye pain after refractive surgery, but factors that cause or sustain pain are unknown. We tested whether tear proteins of patients with pain 3 months after surgery differ from those of patients without pain. Patients undergoing refractive surgery (laser in situ keratomileusis or photorefractive keratectomy ) were recruited from 2 clinics, and tears were collected 3 months after surgery.
View Article and Find Full Text PDFUnderstanding the forces that shape population genetic structure is fundamental both for understanding evolutionary trajectories and for conservation. Many factors can influence the geographic distribution of genetic variation, and the extent to which local populations differ can be especially difficult to predict in highly mobile organisms. For example, many species of seabirds are essentially panmictic, but some show strong structure.
View Article and Find Full Text PDFAnnual cues in the environment result in physiological changes that allow organisms to time reproduction during periods of optimal resource availability. Understanding how circadian rhythm genes sense these environmental cues and stimulate the appropriate physiological changes in response is important for determining the adaptability of species, especially in the advent of changing climate. A first step involves characterizing the environmental correlates of natural variation in these genes.
View Article and Find Full Text PDF