Publications by authors named "B Hammouda"

Personal care products commonly contain perfume mixtures, consisting of numerous perfume raw materials (PRMs), and cosolvents. The lipophilicity and structure of an individual PRM is known to affect its localization within the surfactant self-assembly as well as the micellar geometry. However, because multiple PRMs are used in formulations, significant intermolecular interactions between the PRMs and between the PRMs and the surfactant tail may also influence the location of the PRMs and their effects on the self-assembly.

View Article and Find Full Text PDF

Perfume mixtures contain perfume raw materials (PRMs) with varying structures and hydrophobicities, which influence PRM localization within a surfactant-based formulation and thereby affect the phase behavior. In rinse-off products, the addition of water can further affect the phase behavior. In this study, a mixture of 12 PRMs was used as the oil phase in an aqueous system consisting of sodium trideceth-2 sulfate as a primary surfactant, cocamidopropyl betaine as a cosurfactant, and dipropylene glycol as a cosolvent.

View Article and Find Full Text PDF

Hydrogels are of intense recent interest in connection with biomedical applications ranging from 3-D cell cultures and stem cell differentiation to regenerative medicine, controlled drug delivery and tissue engineering. This prototypical form of soft matter has many emerging material science applications outside the medical field. The physical processes underlying this type of solidification are incompletely understood and this limits design efforts aimed at optimizing these materials for applications.

View Article and Find Full Text PDF

The form factors for star-branched polymers with linear branches or with looping branches are calculated. The effect of chain swelling excluded volume is incorporated through an excluded volume parameter approach. The form factor for ring polymers is also included, since it is nicely derived as a special case.

View Article and Find Full Text PDF