Publications by authors named "B H M Mooers"

Article Synopsis
  • Small extracellular vesicles (sEVs) in pancreatic ductal adenocarcinoma (PDAC) carry specific miRNAs that influence cancer progression, but the reasons for their selective enrichment are not fully understood.
  • The study focuses on Serine/Arginine-rich splicing factor 1 (SRSF1), an onco-protein overexpressed in PDAC, and how modifications like phosphorylation and arginine methylation affect sEV miRNA levels.
  • Treatment with arginine methyltransferase inhibitors increased levels of the specific miRNA miR-1246 in PDAC cells, suggesting that arginine methylation reduces SRSF1's ability to bind this miRNA and enrich it in sEVs,
View Article and Find Full Text PDF

The rearranged-during-transfection (RET) kinase is a validated target for the treatment of RET-altered cancers. Currently approved RET-selective kinase inhibitors, selpercatinib (LOXO-292) and pralsetinib (BLU-667), increase the oncogenic RET protein level upon treatment, which may affect their efficacy. We seek to reduce the oncogenic RET protein level and RET kinase activity simultaneously.

View Article and Find Full Text PDF

The two major challenges in synchrotron size-exclusion chromatography coupled in-line with small-angle x-ray scattering (SEC-SAXS) experiments are the overlapping peaks in the elution profile and the fouling of radiation-damaged materials on the walls of the sample cell. In recent years, many post-experimental analyses techniques have been developed and applied to extract scattering profiles from these problematic SEC-SAXS data. Here, we present three modes of data collection at the BioSAXS Beamline 4-2 of the Stanford Synchrotron Radiation Lightsource (SSRL BL4-2).

View Article and Find Full Text PDF

Mitochondrial RNA editing in trypanosomes represents an attractive target for developing safer and more efficient drugs for treating infections with trypanosomes because this RNA editing pathway is not found in humans. Other workers have targeted several enzymes in this editing system, but not the RNA. Here, we target a universal domain of the RNA editing substrate, which is the U-helix formed between the oligo-U tail of the guide RNA and the target mRNA.

View Article and Find Full Text PDF

Krüppel-like factor 4 (KLF4) is a transcription factor that has been proven necessary for both induction and maintenance of pluripotency and self-renewal. Whole-genome sequencing defined a unique mutation in KLF4 (KLF4) in human meningiomas. However, the molecular mechanism of this tumor-specific KLF4 mutation is unknown.

View Article and Find Full Text PDF