Publications by authors named "B H Gahwiler"

The purpose of this study was to examine whether variability in the shape of dendritic spines affects protein movement within the plasma membrane. Using a combination of confocal microscopy and the fluorescence loss in photobleaching technique in living hippocampal CA1 pyramidal neurons expressing membrane-linked GFP, we observed a clear correlation between spine shape parameters and the diffusion and compartmentalization of membrane-associated proteins. The kinetics of membrane-linked GFP exchange between the dendritic shaft and the spine head compartment were slower in dendritic spines with long necks and/or large heads than in those with short necks and/or small heads.

View Article and Find Full Text PDF

Organotypic slice cultures are the in vitro method of choice for applications requiring long-term survival of the preparation and a high degree of cellular differentiation and organization resembling that of the original tissue. Long-term survival is achieved by culturing slices at the air/liquid interface, either by continuously rotating the preparation (roller-tube cultures) or by culturing them on semiporous membranes (stationary interface cultures). Both culture techniques yield nerve cells which are highly differentiated in terms of their morphological and physiological characteristics.

View Article and Find Full Text PDF

The hippocampal CA3 area, an associational network implicated in memory function, receives monosynaptic excitatory as well as disynaptic inhibitory input through the mossy-fiber axons of the dentate granule cells. Synapses made by mossy fibers exhibit low release probability, resulting in high failure rates at resting discharge frequencies of 0.1 Hz.

View Article and Find Full Text PDF

Maintenance of dendritic spines, the postsynaptic elements of most glutamatergic synapses in the central nervous system, requires continued activation of AMPA receptors. In organotypic hippocampal slice cultures, chronic blockade of AMPA receptors for 14 days induces a substantial loss of dendritic spines on CA1 pyramidal neurons. Here, using serial section electron microscopy, we show that loss of dendritic spines is paralleled by a significant reduction in synapse density.

View Article and Find Full Text PDF

The dentate gyrus continues to produce new granule cells throughout life. Understanding the mechanisms underlying their integration into the pre-existing hippocampal circuitry is of crucial importance. In the present study, we developed an approach allowing visual tracking of newborn granule cells in hippocampal organotypic slices.

View Article and Find Full Text PDF