Publications by authors named "B H Feng"

This study used coal combustion products (CCP) with different calcium contents to replace partial aluminate cement (AC) in equal amounts, and studied the effect of calcium contents on the setting time and early compressive strength of AC. The setting time and early compressive strength were further regulated by adding retarder. The results showed that the higher the calcium content of CCP (CCP2 contains higher calcium content), the shorter the setting time and the higher the 2 h compressive strength after replacing part of cement.

View Article and Find Full Text PDF

Humic acid (HA) enhances colloidal transport in porous media, yet the mechanisms by which the HA adsorption conformation affects colloid transport remain unclear. This study investigated the influence of HA on the transport of petroleum-hydrocarbon-contaminated soil colloids (TPHs-SC) in saturated sand columns. The presence of TPHs on the colloidal surface occupied adsorption sites, hindering HA from forming a horizontal adsorption conformation, as observed on uncontaminated soil colloids (SC).

View Article and Find Full Text PDF

This retrospective study evaluated the efficacy of large language models (LLMs) in improving the accuracy of Chinese ultrasound reports. Data from three hospitals (January-April 2024) including 400 reports with 243 errors across six categories were analyzed. Three GPT versions and Claude 3.

View Article and Find Full Text PDF

Abiotic stresses adversely impact plants survival and growth, which in turn affect plants especially crop yields worldwide. To cope with these stresses, plant responses depend on the activation of molecular networks cascades, including stress perception, signal transduction, and the expression of specific stress-related genes. Plant bZIP (basic leucine zipper) transcription factors are important regulators that respond to diverse abiotic stresses.

View Article and Find Full Text PDF

The high-energy shoulder in the gas-phase fluorescence emission spectrum of pyrene is a well-known example of non-Kasha emission. We comparatively assess two approaches, vibronic perturbation theory and nonadiabatic dynamics, in their ability to predict and explain the gas-phase fluorescence spectrum of pyrene. While both methods qualitatively capture the non-Kasha emission, they differ in their computational requirements, accuracy, and physical interpretation.

View Article and Find Full Text PDF