Mucosal membranes with strong variability in their viscoelastic properties line numerous organs and are often targeted by mucoadhesive formulations, e.g., highly swellable hydroxypropylmethylcellulose (HPMC) and slightly cross-linked poly(acrylic acid) (PAA) tablets.
View Article and Find Full Text PDFAmphiphilic copolymers of comb-like poly(poly(ethylene glycol) methacrylate) (PPEGMA) with methyl methacrylate (MMA) synthesized by one-pot atom transfer radical polymerization were mixed with lithium bis (trifluoromethanesulfonyl) imide salt to formulate dry solid polymer electrolytes (DSPE) for semisolid-state Li-ion battery applications. The PEO-type side chain length (EO monomer's number) in the PEGMA macromonomer units was varied, and its influence on the mechanical and electrochemical characteristics was investigated. It was found that the copolymers, due to the presence of PMMA segments, possess viscoelastic behavior and less change in mechanical properties than a PEO homopolymer with 100 kDa molecular weight in the investigated temperature range.
View Article and Find Full Text PDFBackground: International studies have reported conflicting data about the effects of COVID-19 pandemic policy measures on maternal and neonatal health. A major impact was reported on stillbirth and prematurity. The published literature suggests that the economic setting influenced the effects of imposed mitigation measures with a more severe effect in low-income countries.
View Article and Find Full Text PDFIntroduction: Estrogen hormones and their metabolites are implicated in the maintenance of healthy pregnancy and adequate fetal development. Abnormal levels were related to increased risk of pregnancy complications, particularly preeclampsia. Our aims were (1) to develop a methodological platform for the comprehensive assessment of estrogen metabolome in pregnancy; (2) to collect healthy reference data for relevant elements of estrogen metabolome in each trimester; (3) to assess unconjugated fractions of the estrogen metabolome, (4) to assess the dominant metabolic pathways of estrogen compounds.
View Article and Find Full Text PDF