It is estimated that 225 million women worldwide have an unmet need for family planning, and more than half live in low- and middle-income countries. Increasing the choice of contraceptive methods available can reduce this unmet need. Microneedle drug delivery systems represent a new technology for minimally invasive self-administration of contraceptives.
View Article and Find Full Text PDFMicroneedle (MN)-based technologies have been proposed as a means to facilitate minimally invasive sustained delivery of long-acting hormonal contraceptives into the skin. Intradermal administration is a new route of delivery for these contraceptives and therefore no established laboratory methods or experimental models are available to predict dermal drug release and pharmacokinetics from candidate MN formulations. This study evaluates an in vitro release (IVR) medium and a medium supplemented with ex vivo human skin homogenate (SH) as potential laboratory models to investigate the dermal release characteristics of one such hormonal contraceptive that is being tested for MN delivery, levonorgestrel (LNG), and provides details of an accompanying novel two-step liquid-liquid drug extraction procedure and sensitive reversed-phase HPLC-UV assay.
View Article and Find Full Text PDFThe fabrication of silicon in-plane microneedle arrays from a simple single wet etch step is presented. The characteristic 54.7° sidewall etch angle obtained via KOH etching of (100) orientation silicon wafers has been used to create a novel microneedle design.
View Article and Find Full Text PDFA novel production process flow is presented here for the manufacture of hollow silicon microneedles using deep reactive-ion etching (DRIE) technology. The patent-pending three-step process flow has been developed to produce multiple arrays of sharp-tipped, hollow microneedles, which facilitate easy insertion and controlled fluid injection into excised skin samples. A bevelled tip and vertical sidewalls for the microneedle have been achieved with good uniformity, despite >45% open etch area.
View Article and Find Full Text PDF