Coherent control of Rydberg atoms near dielectric surfaces is a major challenge due to the large sensitivity of Rydberg states to electric fields. We demonstrate coherent single-atom operations and two-qubit entanglement as close as 100 μm from a nanophotonic device. Using the individual atom control enabled by optical tweezers to study the spatial and temporal properties of the electric field from the surface, we employ dynamical decoupling techniques to characterize and cancel the electric-field noise with submicrosecond temporal resolution.
View Article and Find Full Text PDFNeutral atoms and molecules trapped in optical tweezers have become a prevalent resource for quantum simulation, computation, and metrology. However, the maximum achievable system sizes of such arrays are often limited by the stochastic nature of loading into optical tweezers, with a typical loading probability of only 50%. Here we present a species-agnostic method for dark-state enhanced loading (DSEL) based on real-time feedback, long-lived shelving states, and iterated array reloading.
View Article and Find Full Text PDFGate-model quantum computers promise to solve currently intractable computational problems if they can be operated at scale with long coherence times and high-fidelity logic. Neutral-atom hyperfine qubits provide inherent scalability owing to their identical characteristics, long coherence times and ability to be trapped in dense, multidimensional arrays. Combined with the strong entangling interactions provided by Rydberg states, all the necessary characteristics for quantum computation are available.
View Article and Find Full Text PDFThe realization of an efficient quantum optical interface for multi-qubit systems is an outstanding challenge in science and engineering. Using two atoms in individually controlled optical tweezers coupled to a nanofabricated photonic crystal cavity, we demonstrate entanglement generation, fast nondestructive readout, and full quantum control of atomic qubits. The entangled state is verified in free space after being transported away from the cavity by encoding the qubits into long-lived states and using dynamical decoupling.
View Article and Find Full Text PDFPhys Rev Lett
December 2019
We demonstrate high fidelity two-qubit Rydberg blockade and entanglement on a pair of sites in a large two-dimensional qubit array. The qubit array is defined by a grid of blue detuned lines of light with 121 sites for trapping atomic qubits. Improved experimental methods have increased the observed Bell state fidelity to F_{Bell}=0.
View Article and Find Full Text PDF