Publications by authors named "B Gras"

Oncogenic signals lead to premature senescence in normal human cells causing a proliferation arrest and the elimination of these defective cells by immune cells. Oncogene-induced senescence (OIS) prevents aberrant cell division and tumor initiation. In order to identify new regulators of OIS, we performed a loss-of-function genetic screen and identified that the loss of SCN9A allowed cells to escape from OIS.

View Article and Find Full Text PDF

The application of an interband cascade laser, ICL, to multi-mode absorption spectroscopy, MUMAS, in the mid-infrared region is reported. Measurements of individual mode linewidths of the ICL, derived from the pressure dependence of lineshapes in MUMAS signatures of single, isolated, lines in the spectrum of HCl, were found to be in the range 10-80 MHz. Multi-line spectra of methane were recorded using spectrally limited bandwidths, of approximate width 27 cm, defined by an interference filter, and consist of approximately 80 modes at spectral locations spanning the 100 cm bandwidth of the ICL output.

View Article and Find Full Text PDF

An interband cascade laser (ICL) operating at 3.7 μm has been used to perform multimode absorption spectroscopy, MUMAS, at scan rates up to 10 kHz. Line widths of individual modes in the range 10-80 MHz were derived from isolated lines in the MUMAS signatures of HCl.

View Article and Find Full Text PDF

Oncogenic-stress-induced senescence (OIS) is a stress response allowing normal cells, when receiving oncogenic signals, to stably arrest their proliferation. OIS thus acts to prevent aberrant cell proliferation and tumor formation. To identify novel tumor suppressive pathways, we have recently completed a loss-of-function genetic screen to identify novel genes promoting escape from OIS and thus, potentially, tumor formation when their functions are lost.

View Article and Find Full Text PDF

Senescence is involved in various pathophysiological conditions. Besides loss of retinoblastoma and p53 pathways, little is known about other pathways involved in senescence. Here we identify two calcium channels; inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) (also known as inositol 1,4,5-triphosphate receptor 2 (IP3R2)) and mitochondrial calcium uniporter (MCU) as new senescence regulators in a loss-of-function genetic screen.

View Article and Find Full Text PDF