Publications by authors named "B Gorshkov"

In the paper, the effect of spontaneous Brillouin scattering (SpBS) is analyzed as a noise source in distributed acoustic sensors (DAS). The intensity of the SpBS wave fluctuates over time, and these fluctuations increase the noise power in DAS. Based on experimental data, the probability density function (PDF) of the spectrally selected SpBS Stokes wave intensity is negative exponential, which corresponds to the known theoretical conception.

View Article and Find Full Text PDF

Vascular barrier dysfunction is characterized by increased permeability and inflammation of endothelial cells (ECs), which are prominent features of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and sepsis, and a major complication of the SARS-CoV-2 infection and COVID-19. Functional impairment of the EC barrier and accompanying inflammation arises due to microbial toxins and from white blood cells of the lung as part of a defensive action against pathogens, ischemia-reperfusion or blood product transfusions, and aspiration syndromes-based injury. A loss of barrier function results in the excessive movement of fluid and macromolecules from the vasculature into the interstitium and alveolae resulting in pulmonary edema and collapse of the architecture and function of the lungs, and eventually culminates in respiratory failure.

View Article and Find Full Text PDF

A simple and cost-effective architecture of a distributed acoustic sensor (DAS) or a phase-OTDR for engineering geology is proposed. The architecture is based on the dual-pulse acquisition principle, where the dual probing pulse is formed via an unbalanced Michelson interferometer (MI). The necessary phase shifts between the sub-pulses of the dual-pulse are introduced using a 3 × 3 coupler built into the MI.

View Article and Find Full Text PDF

A distributed acoustic sensor (a phase optical time-domain reflectometer) configuration with a low noise level in the hertz and sub-hertz frequency ranges is proposed. The sensor scheme uses a Mach-Zehnder interferometer to generate a dual-pulse probe signal and implements the frequency stabilization of a laser source using the same interferometer as a frequency etalon. The scheme simultaneously provides a low noise level owing to the compensation of the optical path difference of interfering backscattered fields and low drift of the output signal.

View Article and Find Full Text PDF

In the paper, we present a qualitative analysis of the dual-pulse phase optical time domain reflectometry (phase-OTDR) response to uniform and nonuniform propagating fiber strain. It is found that on average over all realizations of scattering centers the response of the dual-pulse phase-OTDR is linear with respect to an external perturbation. Meanwhile, individual responses contain random phase jumps, which are an intrinsic property of phase-OTDR.

View Article and Find Full Text PDF