Publications by authors named "B Glise"

Epithelial-Mesenchymal Transition (EMT) is a key process in physiological and pathological settings. EMT is often presented as a linear sequence with (i) disassembly of cell-cell junctions, (ii) loss of epithelial polarity and (iii) reorganization of the cytoskeleton leading to basal extrusion from the epithelium. Once out, cells can adopt a migratory phenotype with a front-rear polarity.

View Article and Find Full Text PDF

Sulf2a belongs to the Sulf family of extracellular sulfatases which selectively remove 6-O-sulfate groups from heparan sulfates, a critical regulation level for their role in modulating the activity of signalling molecules. Data presented here define Sulf2a as a novel player in the control of Sonic Hedgehog (Shh)-mediated cell type specification during spinal cord development. We show that Sulf2a depletion in zebrafish results in overproduction of V3 interneurons at the expense of motor neurons and also impedes generation of oligodendrocyte precursor cells (OPCs), three cell types that depend on Shh for their generation.

View Article and Find Full Text PDF

Generation of glial cell diversity in the developing spinal cord is known to depend on spatio-temporal patterning programs. In particular, expression of the transcription factor Olig2 in neural progenitors of the pMN domain is recognized as critical to their fate choice decision to form oligodendrocyte precursor cells (OPCs) instead of astrocyte precursors (APs). However, generating some confusion, lineage-tracing studies of Olig2 progenitors in the spinal cord provided evidence that these progenitors also generate some astrocytes.

View Article and Find Full Text PDF

In the ventral spinal cord, generation of neuronal and glial cell subtypes is controlled by Sonic hedgehog (Shh). This morphogen contributes to cell diversity by regulating spatial and temporal sequences of gene expression during development. Here, we report that establishing Shh source cells is not sufficient to induce the high-threshold response required to specify sequential generation of ventral interneurons and oligodendroglial cells at the right time and place in zebrafish.

View Article and Find Full Text PDF

Sulfs are secreted sulfatases that catalyse removal of sulfate from Heparan Sulfate Proteoglycans (HSPGs) in the extracellular space. These enzymes are well known to regulate a number of crucial signalling pathways during development. In this study, we report that DSulfatase-1 (DSulf1), the unique Drosophila Sulf protein, is a regulator of Hedgehog (Hh) signalling during wing development.

View Article and Find Full Text PDF