Publications by authors named "B Gjonaj"

Shaping and controlling electromagnetic fields at the nanoscale is vital for advancing efficient and compact devices used in optical communications, sensing and metrology, as well as for the exploration of fundamental properties of light-matter interaction and optical nonlinearity. Real-time feedback for active control over light can provide a significant advantage in these endeavors, compensating for ever-changing experimental conditions and inherent or accumulated device flaws. Scanning nearfield microscopy, being slow in essence, cannot provide such a real-time feedback that was thus far possible only by scattering-based microscopy.

View Article and Find Full Text PDF

In the past decade, the spin-orbit interaction (SOI) of light has been a driving force in the design of metamaterials, metasurfaces, and schemes for light-matter interaction. A hallmark of the spin-orbit interaction of light is the spin-based plasmonic effect, converting spin angular momentum of propagating light to near-field orbital angular momentum. Although this effect has been thoroughly investigated in circular symmetry, it has yet to be characterized in a noncircular geometry, where whirling, periodic plasmonic fields are expected.

View Article and Find Full Text PDF

Topological defects play a key role in a variety of physical systems, ranging from high-energy to solid-state physics. A skyrmion is a type of topological defect that has shown promise for applications in the fields of magnetic storage and spintronics. We show that optical skyrmion lattices can be generated using evanescent electromagnetic fields and demonstrate this using surface plasmon polaritons, imaged by phase-resolved near-field optical microscopy.

View Article and Find Full Text PDF

Structured illumination microscopy utilizes illumination of periodic light patterns to allow reconstruction of high spatial frequencies, conventionally doubling the microscope's resolving power. This Letter presents a structured illumination microscopy scheme with the ability to achieve 60 nm resolution by using total internal reflection of a double moiré pattern in high-index materials. We propose a realization that provides dynamic control over relative amplitudes and phases of four coherently interfering beams in gallium phosphide and numerically demonstrate its capability.

View Article and Find Full Text PDF

We present an experimental study of Hetero-Chiral (HC) plasmonic lenses, comprised of constituents with opposite chirality, demonstrating linearly dichroic focusing. The lenses focus only light with a specific linear polarization and result in a dark focal spot for the orthogonal polarization state. We introduce the design concepts and quantitatively compare several members of the HC family, deriving necessary conditions for linear dichroism and several comparative engineering parameters.

View Article and Find Full Text PDF