Publications by authors named "B Geil"

The creation of biologically inspired artificial lipid bilayers on planar supports provides a unique platform to study membrane-confined processes in a well-controlled setting. At the plasma membrane of mammalian cells, the linkage of the filamentous (F)-actin network is of pivotal importance leading to cell-specific and dynamic F-actin architectures, which are essential for the cell's shape, mechanical resilience, and biological function. These networks are established through the coordinated action of diverse actin-binding proteins and the presence of the plasma membrane.

View Article and Find Full Text PDF

Membrane-coated colloidal probes combine the benefits of solid-supported membranes with a more complex three-dimensional geometry. This combination makes them a powerful model system that enables the visualization of dynamic biological processes with high throughput and minimal reliance on fluorescent labels. Here, we want to review recent applications of colloidal probes for the study of membrane fusion.

View Article and Find Full Text PDF

The actin cortex is a thin cross-linked network attached to the plasma membrane, which is responsible for the cell's shape during migration, division, and growth. In a reductionist approach, we created a minimal actin cortex (MAC) attached to a lipid membrane to correlate the filamentous actin architecture with its viscoelastic properties. The system is composed of a supported 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine bilayer doped with the receptor lipid phosphatidylinositol(4,5)-bisphosphate (PtdIns(4,5)P) to which a constitutively active mutant of ezrin, which is a direct membrane-cytoskeleton linker, is bound.

View Article and Find Full Text PDF

In the plasma membrane of eukaryotic cells, proteins and lipids are organized in clusters, the latter ones often called lipid domains or "lipid rafts." Recent findings highlight the dynamic nature of such domains and the key role of membrane geometry and spatial boundaries. In this study, we used porous substrates with different pore radii to address precisely the extent of the geometric constraint, permitting us to modulate and investigate the size and mobility of lipid domains in phase-separated continuous pore-spanning membranes (PSMs).

View Article and Find Full Text PDF

The fusion of lipid membranes is a key process in biology. It enables cells and organelles to exchange molecules with their surroundings, which otherwise could not cross the membrane barrier. To study such complex processes we use simplified artificial model systems, i.

View Article and Find Full Text PDF