Fluorescence pH sensing has proven to be efficient but with the drawback that molecules photobleach, requiring frequent calibrations. Double-emission peak molecules allow ratiometric measurements and theoretically avoid calibration. However, they are often expensive and fragile and usually have very low quantum yields.
View Article and Find Full Text PDFDue to its impressive optical properties, lithium niobate (LiNbO) is considered to be one of the most important ferroelectric materials. Its uses in sensing platforms require functionalization at the surface to enable the capture and quantifying of molecules. The current paper aims to demonstrate the covalent bonding of aminosilane layers to the LiNbO surface.
View Article and Find Full Text PDFLaser ablation of bulk target materials in liquids has been established as an alternative method for the synthesis of nanoparticles colloidal solutions mainly due to the fact that the synthesized nanoparticles have bare, ligand-free surfaces since no chemical precursors are used for their synthesis. InSb is a narrow band gap semiconductor which has the highest carrier mobility of any known semiconductor and nanoparticles of this material are useful in optoelectronic device fabrication. In this paper a bulk InSb target was ablated in deionized (DI) water or ethanol using a nanosecond (20 ns) or a femtosecond (90 fs) pulsed laser source, for nanoparticles synthesis.
View Article and Find Full Text PDFMicrofluidic devices were designed to perform on micromoles of biological macromolecules and viruses the search and the optimization of crystallization conditions by counter-diffusion, as well as the on-chip analysis of crystals by X-ray diffraction. Chips composed of microchannels were fabricated in poly-dimethylsiloxane (PDMS), poly-methyl-methacrylate (PMMA) and cyclo-olefin-copolymer (COC) by three distinct methods, namely replica casting, laser ablation and hot embossing. The geometry of the channels was chosen to ensure that crystallization occurs in a convection-free environment.
View Article and Find Full Text PDFSeven new amphiphilic cyclodextrins bearing bipyridyl or bithiazolyl moieties at the narrow rim and free hydroxyl or methoxyl groups at the wide rim of the cyclooctaamylose crown were synthesized using a one step "phosphine imide" approach. These ligands form metal complexes that have fluorescence properties with potentials for optical applications. Here, the cyclodextrin derivatives were used as probes for evaluating the role of different moieties in the self-assembly process, providing crucial information in creating functional devices.
View Article and Find Full Text PDF