Publications by authors named "B Garcia Villalba"

The hepatitis C virus RNA-dependent RNA polymerase NS5B is responsible for the replication of the viral genome. Previous studies have uncovered NTP-mediated excision mechanisms that may be responsible for aiding in maintaining fidelity (the frequency of incorrect incorporation events relative to correct), but little is known about the fidelity of NS5B. In this study, we used transient-state kinetics to examine the mechanistic basis for polymerase fidelity.

View Article and Find Full Text PDF

NS5B is the RNA-dependent RNA polymerase that catalyzes the replication of the hepatitis C virus genome. It is a major target for antiviral drugs including nucleoside analogs, such as the prodrugs mericitabine and sofosbuvir, which get metabolized to 2'-fluoro-2'C-methylcytidine-5'-triphosphate and 2'-fluoro-2'C-methyluridine-5'-triphosphate, respectively. These analogs act as chain terminators after they are incorporated during RNA synthesis.

View Article and Find Full Text PDF

Mutant isocitrate dehydrogenase 1 (IDH1) is an attractive therapeutic target for the treatment of various cancers such as AML, glioma, and glioblastoma. We have evaluated 3-pyrimidin-4-yl-oxazolidin-2-ones as mutant IDH1 inhibitors that bind to an allosteric, induced pocket of IDH1. This Letter describes SAR exploration focused on improving both the and metabolic stability of the compounds, leading to the identification of as a potent and selective mutant IDH1 inhibitor that has demonstrated brain penetration and excellent oral bioavailability in rodents.

View Article and Find Full Text PDF

Inhibition of mutant IDH1 is being evaluated clinically as a promising treatment option for various cancers with hotspot mutation at Arg. Having identified an allosteric, induced pocket of IDH1, we have explored 3-pyrimidin-4-yl-oxazolidin-2-ones as mutant IDH1 inhibitors for modulation of 2-HG production and potential brain penetration. We report here optimization efforts toward the identification of clinical candidate (), a potent and selective mutant IDH1 inhibitor that has demonstrated brain exposure in rodents.

View Article and Find Full Text PDF

Lactobacillus wasatchensis, an obligate heterofermentative nonstarter lactic acid bacteria (NSLAB) implicated in causing gas defects in aged cheeses, was originally isolated from an aged Cheddar produced in Logan, Utah. To determine the geographical distribution of this organism, we isolated slow-growing NSLAB from cheeses collected in different regions of the United States, Australia, New Zealand, and Ireland. Seven of the cheeses showed significant gas defects and 12 did not.

View Article and Find Full Text PDF