Cone snail venoms provide a largely untapped source of novel peptide drug leads. To enhance the discovery phase, a detailed comparative proteomic analysis was undertaken on milked venom from the mollusk-hunting cone snail, Conus textile, from three different geographic locations (Hawai'i, American Samoa and Australia's Great Barrier Reef). A novel milked venom conopeptide rich in post-translational modifications was discovered, characterized and named α-conotoxin TxIC.
View Article and Find Full Text PDFThe alpha-conotoxins are potent and selective antagonists of nicotinic acetylcholine receptors (nAChR). Exploitation of these and other peptides in research and clinical settings has been hampered by the lability of the disulfide bridges that are essential for toxin structure and activity. One solution to this problem is replacement of cystine bridges with nonreducible dicarba linkages.
View Article and Find Full Text PDFPain therapeutics discovered by molecular mining of the expressed genome of Australian predatory cone snails are providing lead compounds for the treatment of neurological diseases such as multiple sclerosis, shingles, diabetic neuropathy and other painful neurological conditions. The high specificity exhibited by these novel compounds for neuronal receptors and ion channels in the brain and nervous system indicates the high degree of selectivity that this class of neuropeptides can be expected to show when used therapeutically in humans. A lead compound, ACV1 (conotoxin Vc1.
View Article and Find Full Text PDFThis paper demonstrates the capacity of the neuronal nicotinic acetylcholine receptor (nAChR) antagonist alpha-conotoxin Vc1.1 to inhibit pain responses in vivo. Vc1.
View Article and Find Full Text PDF