Publications by authors named "B G Breitmeyer"

The pulsed- and steady-pedestal paradigms were designed to track increment thresholds (Δ) as a function of pedestal contrast (C) for the parvocellular (P) and magnocellular (M) systems, respectively. These paradigms produce contrasting results: linear relationships between Δ and are observed in the pulsed-pedestal paradigm, indicative of the P system's processing, while the steady-pedestal paradigm reveals nonlinear functions, characteristic of the M system's response. However, we recently found the P model fits better than the M model for both paradigms, using Gabor stimuli biased towards the M or P systems based on their sensitivity to color and spatial frequency.

View Article and Find Full Text PDF

Theoretically, the pulsed- and steady-pedestal paradigms are thought to track contrast-increment thresholds (ΔC) as a function of pedestal contrast (C) for the parvocellular (P) and magnocellular (M) systems, respectively, yielding linear ΔC versus C functions for the pulsed- and nonlinear functions for the steady-pedestal paradigm. A recent study utilizing these paradigms to isolate the P and M systems reported no evidence of the M system being suppressed by red light, contrary to previous physiological and psychophysical findings. Curious as to why this may have occurred, we examined how ΔC varies with C for the P and M systems using the pulsed- and steady-pedestal paradigms and stimuli biased towards the P or M systems based on their sensitivity to spatial frequency (SF) and color.

View Article and Find Full Text PDF

Using the prime-probe comparison paradigm, Jacob, Breitmeyer, and Treviño (2013) demonstrated that information processing in visual short-term memory (VSTM) proceeds through three stages: sensory visible persistence (SVP), nonvisible informational persistence (NIP), and visual working memory (VWM). To investigate the effect of increasing the memory load on these stages by using 1, 3, and 5 display items, measures of VSTM performance, including storage, storage-slopes, and scan-slopes, were obtained. Results again revealed three stages of VSTM processing, but with the NIP stage increasing in duration as memory load increased, suggesting a need, during the NIP stage, for transfer and encoding delays of information into VWM.

View Article and Find Full Text PDF

To efficiently use its finite resources, the visual system selects for further processing only a subset of the rich sensory information. Visual masking and spatial attention control the information transfer from visual sensory-memory to visual short-term memory. There is still a debate whether these two processes operate independently or interact, with empirical evidence supporting both arguments.

View Article and Find Full Text PDF