Publications by authors named "B Flumerfelt"

The role that nitric oxide may play in modulating graft function in long-term fetal ventral mesencephalic grafts in an animal model of Parkinson's disease was investigated. Mature grafts harvested from the entire fetal ventral mesencephalon possessed a large number of neuronal nitric oxide synthase (nNOS)/NADPH-diaphorase-containing neurons throughout the graft intermingled with dopaminergic neurons. The morphological and neurochemical characteristics of these NADPH-diaphorase neurons resembled those in centers adjacent to the substantia nigra of adult brain but not that of the striatum.

View Article and Find Full Text PDF

Transplanting fetal striatal tissue is currently considered to be an important alternative strategy in the treatment of Huntington's disease. Although grafted striatal tissue differentiates and shows certain structural and neurochemical features of the normal striatum and receives host afferents, it is not clear whether host-derived afferent inputs can modulate the activity of neurotransmitter receptors and their signaling in the graft. An intricate interaction between dopaminergic and glutamatergic systems is pivotal for striatal function.

View Article and Find Full Text PDF

It is generally believed that haloperidol exerts its motor side effects and therapeutic effects mainly by antagonizing dopamine D(2) receptors in the striatum and the nucleus accumbens, respectively. Several neurotransmitters/modulators, including glutamate, acetylcholine, adenosine and histamine, affect dopaminergic activity in these centers. We have recently shown that N-methyl-D-aspartate receptor-mediated modulation of haloperidol-induced c-fos expression differs in functionally specific regions of the striatum and the nucleus accumbens.

View Article and Find Full Text PDF

Acute administration of haloperidol induces the expression of the immediate-early gene c-fos in the striatum and nucleus accumbens via dopamine D(2) receptor antagonism. Dopaminergic transmission in the striatum and nucleus accumbens is modulated by glutamate via N-methyl-D-aspartate (NMDA) receptors. Indeed, haloperidol-induced c-fos expression is dependent on NMDA receptor activation in the dorsolateral part of the striatum.

View Article and Find Full Text PDF

We recently characterized the rat brain homolog of mouse muscle CArG-binding protein A initially identified in C2 myogenic cells and showed an inverse temporal correlation between increased expression levels of this messenger RNA, c-fos and zif268 messenger RNA levels following the addition of nerve growth factor to PC12 cells. In addition, we found an inverse correlation between c-Fos protein and CArG-binding protein A messenger RNA levels in the lateral caudate-putamen of rats treated acutely and chronically with the D2 receptor antagonist fluphenazine (phenothiozine typical psychotic). To determine whether D1 receptor stimulation is also capable of inducing CArG-binding protein A up-regulation, drug naive or dopamine-depleted (i.

View Article and Find Full Text PDF