Publications by authors named "B Flick"

A 14-day rat study with plasma metabolomics was conducted to evaluate the toxicity of Benzene. Wistar rats were orally administered Benzene daily at doses of 0, 300 and 1000 mg/kg bw. The study identified liver and kidneys as target organs of Benzene toxicity and found reductions in total white blood cells, absolute lymphocyte and eosinophil cell counts, and increased relative monocyte counts suggesting bone marrow as a target organ.

View Article and Find Full Text PDF

While grouping/read-across is widely used to fill data gaps, chemical registration dossiers are often rejected due to weak category justifications based on structural similarity only. Metabolomics provides a route to robust chemical categories via evidence of shared molecular effects across source and target substances. To gain international acceptance, this approach must demonstrate high reliability, and best-practice guidance is required.

View Article and Find Full Text PDF

Angiogenesis is a key process in embryonic development, a disruption of this process can lead to severe developmental defects, such as limb malformations. The identification of molecular perturbations representative of antiangiogenesis in zebrafish embryo (ZFE) may guide the assessment of developmental toxicity from an endpoint- to a mechanism-based approach, thereby improving the extrapolation of findings to humans. Thus, the aim of the study was to discover molecular changes characteristic of antiangiogenesis and developmental toxicity.

View Article and Find Full Text PDF

Structure-based grouping of chemicals for targeted testing and read-across is an efficient way to reduce resources and animal usage. For substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs), structure-based grouping is virtually impossible. Biology-based approaches such as metabolomics could provide a solution.

View Article and Find Full Text PDF

Dicyclopentadiene (DCPD) was investigated in a 14-day oral rat toxicity study based on the OECD 407 guideline in combination with plasma metabolomics. Wistar rats received the compound daily via gavage at dose levels of 0, 50 and 150 mg/kg bw. The high dose induced transient clinical signs of toxicity and in males only reduced body weight gain.

View Article and Find Full Text PDF