Publications by authors named "B Fingerhut"

The hydration shells of phosphate ions and phosphate groups of nucleotides and phospholipid membranes display markedly different structures and hydrogen-bond strengths. Understanding phosphate hydration requires insight into the spatial arrangements of water molecules around phosphates and in thermally activated structure fluctuations on ultrafast time scales. Femtosecond two-dimensional infrared spectroscopy of phosphate vibrations, particularly asymmetric stretching vibrations between 1000 and 1200 cm-1, and ab initio molecular dynamics (AIMD) simulations are combined to map and characterize dynamic local hydration structures and phosphate-water interactions.

View Article and Find Full Text PDF

The photoinduced all-trans to 13-cis isomerization of the retinal Schiff base represents the ultrafast first step in the reaction cycle of bacteriorhodopsin (BR). Extensive experimental and theoretical work has addressed excited-state dynamics and isomerization via a conical intersection with the ground state. In conflicting molecular pictures, the excited state potential energy surface has been modeled as a pure S[Formula: see text] state that intersects with the ground state, or in a 3-state picture involving the S[Formula: see text] and S[Formula: see text] states.

View Article and Find Full Text PDF

Electric forces acting on molecules in liquids at ambient temperature fluctuate at terahertz (THz) frequencies with a direct impact on their electronic and optical properties. We introduce the transient THz Stark effect to modify the electronic absorption spectra of dye molecules and, thus, elucidate and determine the underlying molecular interactions and dynamics. Picosecond electric fields of megavolts/cm induce a nonequilibrium response of the prototypical Betaine-30 in polar solution that is probed via transient absorption changes.

View Article and Find Full Text PDF

An electron solvated in a polar liquid is an elementary quantum system with properties governed by electric interactions with a fluctuating molecular environment. In the prevailing single particle picture, the quantum ground and excited states are determined by a self-consistent potential, as defined by the particular local configuration of the solvation shell. This description neglects collective many-body excitations, which arise from the coupling of electronic degrees of freedom and nuclear motions of the environment.

View Article and Find Full Text PDF

The presence of ions affects the structure and dynamics of water on a multitude of length and time scales. In this context, pairs of Mg and SO ions in water constitute a prototypical system for which conflicting pictures of hydration geometries and dynamics have been reported. Key issues are the molecular pair and solvation shell geometries, the spatial range of electric interactions, and their impact on solvation dynamics.

View Article and Find Full Text PDF