Neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein Ab disease, and autoimmune myasthenia gravis (MG) are autoantibody-mediated neurologic conditions where autoantibodies can induce Ab-dependent cellular cytotoxicity (ADCC), a NK cell-mediated effector function. However, whether ADCC is a pathogenic mechanism in patients with these conditions has not been confirmed. We sought to characterize circulatory NK cells using functional assays, phenotyping, and transcriptomics to elucidate their role in pathology.
View Article and Find Full Text PDFMyelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is an inflammatory demyelinating CNS condition characterized by the presence of MOG autoantibodies. We sought to investigate whether human MOG autoantibodies are capable of mediating damage to MOG-expressing cells through multiple mechanisms. We developed high-throughput assays to measure complement activity (CA), complement-dependent cytotoxicity (CDC), antibody-dependent cellular phagocytosis (ADCP), and antibody-dependent cellular cytotoxicity (ADCC) of live MOG-expressing cells.
View Article and Find Full Text PDFBackground: Epilepsy frequently coexists with neuropathic pain. Our approach is based on the search for active compounds with multitarget profiles beneficial in terms of potential side effects and on the implementation of screening for potential multidirectional central activity.
Methods: Compounds were synthesized by means of chemical synthesis.
Arrhythmia, an irregular heartbeat, might be a life-threatening condition but also a risk factor for stroke or worsen the prognosis after myocardial infarction. The limited efficacy and proarrhythmic potential of the available drugs require searching for new, more effective, and safer pharmacotherapies. Studies indicate that the blockade of α-adrenoceptors could be effective in treating heart rhythm abnormalities.
View Article and Find Full Text PDFBackground: Antiplatelet drugs have been used in the treatment of acute coronary syndromes and for the prevention of recurrent events. Unfortunately, many patients remain resistant to the available antiplatelet treatment. Therefore, there is a clinical need to synthesize novel antiplatelet agents, which would be associated with different pathways of platelet aggregation, to develop an alternative or additional treatment for resistant patients.
View Article and Find Full Text PDF