A journey from the earliest known use of lenses and magnifying glasses in ancient times, through the development of microscopes and towards modern electron microscopy techniques. The evolving technology and improved microscopes enabled the discovery of intracellular organelles, the nucleus and nuclear pore complexes (NPCs). Current advances have led to composite three-dimensional models showing NPC structure in unprecedented detail but relying on the averaging of many images.
View Article and Find Full Text PDFType III secretion systems (T3SSs) are syringe-like protein complexes used by some of the most harmful bacterial pathogens to infect host cells. While the T3SS filament, a long hollow conduit that bridges between bacteria and host cells, has been characterized structurally, very little is known about its physical properties. These filaments should endure shear and normal stresses imposed by the viscous mucosal flow during infection within the intestinal tract.
View Article and Find Full Text PDFBacterial conjugation is one of the most abundant horizontal gene transfer (HGT) mechanisms, playing a fundamental role in prokaryote evolution. A better understanding of bacterial conjugation and its cross talk with the environment is needed for a more complete understanding of HGT mechanisms and to fight the dissemination of malicious genes between bacteria. Here, we studied the effect of outer space, microgravity, and additional key environmental cues on transfer ( gene expression and conjugation efficiency, using the under studied broad-host range plasmid pN3, as a model.
View Article and Find Full Text PDFCleft lip and/or cleft palate are a common group of birth defects that further classify into syndromic and non-syndromic forms. The syndromic forms are usually accompanied by additional physical or cognitive abnormalities. Isolated cleft palate syndromes are less common; however, they are associated with a variety of congenital malformations and generally have an underlying genetic etiology.
View Article and Find Full Text PDFMethods Mol Biol
April 2022
Field emission scanning electron microscopy (FESEM) is a well-established technique for acquiring three-dimensional surface images of nuclear pore complexes (NPCs). We present an optimized protocol for the exposure of mammalian cell nuclei and direct surface imaging of nuclear envelopes by FESEM, allowing for a detailed morphological comparison of individual NPCs, without the need for averaging techniques. This provides a unique high resolution tool for studying the effects of cellular stress, specific genetic manipulations and inherited diseases on the ultrastructure of human NPCs.
View Article and Find Full Text PDF