Publications by authors named "B Fichtlscherer"

Glomerular mesangial cells can produce high amounts of nitric oxide (NO) and reactive oxygen species (ROS). Here we analyzed the impact of NO on the ROS-generating system, particularly on the NADPH oxidase Nox1. Nox1 mRNA and protein levels were markedly decreased by treatment of mesangial cells with the NO-releasing compound DETA-NO in a concentration- and time-dependent fashion.

View Article and Find Full Text PDF

Little is known about the signaling cascades that eventually regulate the activity of the endothelial nitric oxide synthase (eNOS) in platelets. Here, we investigated the effects of insulin on the phosphorylation and activation of eNOS in washed human platelets and in endothelial cells. Insulin activated the protein kinase Akt in cultured endothelial cells and increased the phosphorylation of eNOS on Ser(1177) but failed to increase endothelial cyclic GMP levels or to elicit the relaxation of endothelium-intact porcine coronary arteries.

View Article and Find Full Text PDF

Objective: The Ca2+ antagonist amlodipine increases the generation of nitric oxide (NO) from native and cultured endothelial cells. The aim of this investigation was to determine whether or not the activation of the endothelial NO synthase (eNOS) by this Ca2+ antagonist is related to alterations in eNOS phosphorylation.

Methods And Results: In isolated, pre-contracted, endothelium-intact porcine coronary arteries, amlodipine elicited an NO-mediated relaxation and a leftward shift in the concentration-relaxation curve to bradykinin.

View Article and Find Full Text PDF

Nitroglycerin (glyceryl trinitrate, GTN) relaxes blood vessels primarily via activation of the soluble guanylyl cyclase (sGC)/cGMP/cGMP-dependent protein kinase (cGK-I) pathway. Although the precise mechanism of sGC activation by GTN in the vascular wall is unknown, the mediatory role of nitric oxide (NO) has been postulated. We tested the GTN/NO hypothesis in different types of isolated rat and rabbit blood vessels using two novel approaches: (1) EPR spin trapping using colloid Fe(DETC)2 and (2) analysis of cGK-I-dependent phosphorylation of the vasodilator-stimulated phosphoprotein at Ser239 (P-VASP).

View Article and Find Full Text PDF

Nitric oxide (NO) regulates multiple biological processes. To use NO as a potential therapeutic substance, a more selective modulation of individual NO targets is desirable. Here, we tested whether peptide conjugation of the dinitrosyl-iron complex (DNIC), a potent NO donor, confers targeted NO delivery.

View Article and Find Full Text PDF