Publications by authors named "B Fermini"

There is no refuting that America's population is growing older: for the first time in US history, by 2034 older adults (defined as >65 years of age) are projected to outnumber children under the age of 18, representing approximately 70 million people or almost 25% of the population (Lloyd-Jones et al., 2010). Described as the "silver tsunami", this flood of older adults is driven by the baby boomers (people born after World War II, from 1946 to 1964): they are now reaching old age, living longer due to significant advances in healthcare coupled with a record low birth rate, resulting in a skewed elderly population demographic.

View Article and Find Full Text PDF

There is no doubt that automated patch clamp (APC) technology has revolutionized research in biomedical science. High throughput ion channel screening is now an integral part of the development and safety profiling of the majority of new chemical entities currently developed to address unmet medical needs. The increased throughput it provides has significantly improved the ability to overcome the time-consuming, low throughput bottlenecks resulting from the more conventional manual patch clamp method, considered the 'gold standard', for studying ion channel function and pharmacology.

View Article and Find Full Text PDF

There is no doubt that automated patch clamp (APC) technology has revolutionized research in biomedical science. High throughput ion channel screening is now an integral part of the development and safety profiling of the majority of new chemical entities currently developed to address unmet medical needs. The increased throughput it provides has significantly improved the ability to overcome the time-consuming, low throughput bottlenecks resulting from the more conventional manual patch clamp method, considered the 'gold standard', for studying ion channel function and pharmacology.

View Article and Find Full Text PDF

Automated patch clamp (APC) instruments enable efficient evaluation of electrophysiologic effects of drugs on human cardiac currents in heterologous expression systems. Differences in experimental protocols, instruments, and dissimilar site procedures affect the variability of IC values characterizing drug block potency. This impacts the utility of APC platforms for assessing a drug's cardiac safety margin.

View Article and Find Full Text PDF