White-matter injury leads to severe functional loss in many neurological diseases. Myelin staining on histological samples is the most common technique to investigate white-matter fibers. However, tissue processing and sectioning may affect the reliability of 3D volumetric assessments.
View Article and Find Full Text PDFX-ray phase contrast imaging can provide improved or complementary information to traditional attenuation-based X-ray imaging, making the field a vast and rapidly evolving research subject. X-ray speckle-based imaging (SBI) is one phase-contrast imaging approach that has shown significant potential in providing both high sensitivity and high resolution while using a very simple experimental setup. With the aim of transferring such phase-contrast-based imaging techniques from synchrotron to laboratory X-ray sources, the issue of the deposited radiation dose still remains to be addressed.
View Article and Find Full Text PDFX-ray Phase Contrast Imaging (PCI) is an emerging modality whose availability in clinics for mammography and lung imaging is expected to materialize within the coming years. In this study, we evaluate the PCI Computed Tomography (PCI-CT) performances with respect to current conventional imaging modalities in the context of osteo-articular disorders diagnosis. X-ray PCI-CT was performed on 3 cadaveric human hands and wrists using a synchrotron beam.
View Article and Find Full Text PDFHuman vocal folds possess outstanding abilities to endure large, reversible deformations and to vibrate up to more than thousand cycles per second. This unique performance mainly results from their complex specific 3D and multiscale structure, which is very difficult to investigate experimentally and still presents challenges using either confocal microscopy, MRI or X-ray microtomography in absorption mode. To circumvent these difficulties, we used high-resolution synchrotron X-ray microtomography with phase retrieval and report the first ex vivo 3D images of human vocal-fold tissues at multiple scales.
View Article and Find Full Text PDFThe extracellular serine protease inhibitor serpinE2 is overexpressed in breast cancer and has been shown to foster metastatic spread. Here, we investigated the hypothesis that serpinE2 creates tumor-promoting conditions in the tumor microenvironment (TME) by affecting extracellular matrix remodeling. Using two different breast cancer models, we show that blocking serpinE2, either by knock-down (KD) in tumor cells or in response to a serpinE2 binding antibody, decreases metastatic dissemination from primary tumors to the lungs.
View Article and Find Full Text PDF