Rationale: Psychostimulants, such as amphetamine (AMPH) and methylphenidate (MPH), non-selectively elevate extracellular concentrations of the catecholamine neurotransmitters, dopamine (DA) and norepinephrine (NE), and are common pharmacological strategies used to improve prefrontal cortex (PFC)-dependent cognitive dysfunction. However, this approach can be problematic given AMPH has been shown to increase preference for risky choices in a rodent assay of risk/reward decision making. SK609 is a novel NE reuptake blocker that selectively activates DA D3 receptors without affinity for the DA transporter.
View Article and Find Full Text PDFCellular responses to stimuli underpin discoveries in drug development, synthetic biology, and general life sciences. We introduce a library comprising 6144 synthetic promoters, each shorter than 250 bp, designed as transcriptional readouts of cellular stimulus responses in massively parallel reporter assay format. This library facilitates precise detection and amplification of transcriptional activity from our promoters, enabling the systematic development of tunable reporters with dynamic ranges of 50-100 fold.
View Article and Find Full Text PDFBackground: A fundamental obstacle for the preclinical development of ultrasound-(US) mediated cardiac imaging remains cardiac motion, which limits interframe correlation during extended acquisition periods.
Purpose: To address this need, we present the design and implementation of a 3D-printed vacuum coupler that stabilizes a US transducer on the epicardial surface of the heart for feasibility assessment and development of advanced, cardiac, US-mediated imaging approaches.
Methods: The vacuum coupler was 3D printed with biocompatible resins and secured with a standard intraoperative suction aspirator.