We revisit gravitational wave (GW) memory as the key to measuring spacetime symmetries, extending beyond its traditional role in GW searches. In particular, we show how these symmetries may be probed via displacement and spin memory observations, respectively. We further find that the Einstein Telescope's (ET) sensitivity enables constraining the strain amplitude of a displacement memory to 2% and that of spin memory to 22%.
View Article and Find Full Text PDFIn this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.
View Article and Find Full Text PDFConvolutional neural networks (CNNs) have been widely used in image recognition and processing tasks. Memristor-based CNNs accumulate the advantages of emerging memristive devices, such as nanometer critical dimensions, low power consumption, and functional similarity to biological synapses. Most studies on memristor-based CNNs use either software models of memristors for simulation analysis or full hardware CNN realization.
View Article and Find Full Text PDF