Publications by authors named "B Eussen"

Facioscapulohumeral muscular dystrophy (FSHD) is caused by sporadic misexpression of the transcription factor double homeobox 4 (DUX4) in skeletal muscles. So far, monolayer cultures and animal models have been used to study the FSHD disease mechanism and for FSHD therapy development, but these models do not fully recapitulate the disease and there is a lack of knowledge on how DUX4 misexpression leads to skeletal muscle dysfunction. To overcome these barriers, we have developed a three-dimensional tissue engineered skeletal muscle (3D-TESM) model by generating genetically matched myogenic progenitors (MPs) from human induced pluripotent stem cells of three mosaic FSHD patients.

View Article and Find Full Text PDF

Reactivation of fetal hemoglobin expression alleviates the symptoms associated with β-globinopathies, severe hereditary diseases with significant global health implications due to their high morbidity and mortality rates. The symptoms emerge following the postnatal transition from fetal-to-adult hemoglobin expression. Extensive research has focused on inducing the expression of the fetal γ-globin subunit to reverse this switch and ameliorate these symptoms.

View Article and Find Full Text PDF

Purpose: Myopia (nearsightedness) is a condition in which a refractive error (RE) affects vision. Although common variants explain part of the genetic predisposition (18%), most of the estimated 70% heritability is missing. Here, we investigate the contribution of rare genetic variation because this might explain more of the missing heritability in the more severe forms of myopia.

View Article and Find Full Text PDF

Induced pluripotent stem cell (iPSC)-derived kidney organoids are a potential tool for the regeneration of kidney tissue. They represent an early stage of nephrogenesis and have been shown to successfsully vascularize and mature further in vivo. However, there are concerns regarding the long-term safety and stability of iPSC derivatives.

View Article and Find Full Text PDF

Approximately 25% of all uveal melanoma (UM) contain driver mutations in the gene encoding the spliceosome factor , and whilst patients with such mutations generally have an intermediate risk on developing metastatic disease, a third of these patients develop early metastasis within 5 years after diagnosis. We therefore investigated whether clinical and/or genetic variables could be indicative of short progression-free survival (PFS < 60 months) or long PFS (PFS ≥ 60 months) for -mutated () UM patients. We collected 146 UM from our Rotterdam Ocular Melanoma Studygroup (ROMS) database and external published datasets.

View Article and Find Full Text PDF