Publications by authors named "B Era"

Tyrosinase, a key protein in the biosynthesis of melanin pigments, is crucial in determining skin pigmentation. Inhibiting tyrosinase activity is a promising approach for treating conditions related to excessive pigmentation. For the synthesis of more potent tyrosinase inhibitors, we combined two approaches, para-substitution and lipophilicity, to enhance the inhibitory properties of ()-2-(4-hydroxybenzylidene)hydrazine-1-carbotiamide, whose enzyme inhibitory properties have been previously demonstrated.

View Article and Find Full Text PDF

Type 2 diabetes (T2D), characterized by insulin resistance and β-cell dysfunction, requires continuous advancements in management strategies, particularly in controlling postprandial hyperglycemia to prevent complications. Current antidiabetics, which have α-amylase and α-glucosidase inhibitory activities, have side effects, prompting the search for better alternatives. In addition, diabetes patients are particularly vulnerable to yeast infections because an unusual sugar concentration promotes the growth of spp.

View Article and Find Full Text PDF

A small library of 1-(4-nitrophenyl)-3-arylprop-2-en-1-one derivatives was synthesized to identify new human monoamine oxidase B selective inhibitors. Their inhibitory activity toward MAO-A and MAO-B isoforms was evaluated to determine their potency and selectivity. All newly synthesized compounds were nanomolar inhibitors of the B isoform with IC concentrations ranging from 120 to 2.

View Article and Find Full Text PDF

In this study, heterocyclic compounds containing a benzothiophene scaffold were designed and synthetized, and their inhibitory activity against cholinesterases (ChE) and the viability of SH-SY5Y cells have been evaluated. Benzothiophenes - and benzothiophene-chalcone hybrids - were tested against both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), revealing interesting structure-activity relationships. In general, benzothiophene-chalcone hybrids from series proved to be better inhibitors of both enzymes, with compound being the best AChE inhibitor (IC = 62.

View Article and Find Full Text PDF

Xanthine oxidase (XO) plays a critical role in purine catabolism, catalyzing the conversion of hypoxanthine to xanthine and xanthine to uric acid, contributing to superoxide anion production. This process is implicated in various human diseases, particularly gout. Traditional XO inhibitors, such as allopurinol and febuxostat, while effective, may present side effects.

View Article and Find Full Text PDF