Publications by authors named "B Ennis"

Cancer immunotherapies produce remarkable results in B cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor and normal tissues to identify biologically relevant cell surface immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer. Proteogenomic analyses reveal sixty high-confidence candidate immunotherapeutic targets, and we prioritize delta-like canonical notch ligand 1 (DLK1) for further study.

View Article and Find Full Text PDF

Mechanical metamaterials exhibit interesting properties such as high stiffness at low density, enhanced energy absorption, shape morphing, sequential deformations, auxeticity and robust waveguiding. Until now, metamaterial design has primarily relied on geometry, and materials nonlinearities such as viscoelasticity, fracture and plasticity have been largely left out of the design rationale. In fact, plastic deformations have been traditionally seen as a failure mode and thereby carefully avoided.

View Article and Find Full Text PDF

Pediatric brain cancer is the leading cause of disease-related mortality in children, and many aggressive tumors still lack effective treatment strategies. We characterized aberrant alternative splicing across pediatric brain tumors, identifying pediatric high-grade gliomas (HGGs) among the most heterogeneous. Annotating these events with UniProt, we identified 11,940 splice events in 5,368 genes leading to potential protein function changes.

View Article and Find Full Text PDF
Article Synopsis
  • The Open Pediatric Cancer (OpenPedCan) Project builds upon the earlier Open Pediatric Brain Tumor Atlas, analyzing data from over 6,000 pediatric cancer patients and providing a vast multi-omic dataset from various tumor types.
  • The project integrates multiple genomic and proteomic data types, allowing researchers to access harmonized data through platforms like GitHub, CAVATICA, and AWS.
  • OpenPedCan enhances molecular subtyping of tumors by incorporating methylation information, facilitating research that supports more accurate diagnosis and treatment strategies in pediatric cancer.
View Article and Find Full Text PDF

Unlabelled: Cancer immunotherapies have produced remarkable results in B-cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor specimens along with normal tissues to identify biologically relevant cell surface proteins that can serve as immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer of the developing nervous system. We apply this approach to human-derived cell lines (N=9) and cell/patient-derived xenograft (N=12) models of neuroblastoma.

View Article and Find Full Text PDF