Acetate, a major by-product of glycolytic metabolism in Escherichia coli and many other microorganisms, has long been considered a toxic waste compound that inhibits microbial growth. This counterproductive auto-inhibition represents a major problem in biotechnology and has puzzled the scientific community for decades. Recent studies have however revealed that acetate is also a co-substrate of glycolytic nutrients and a global regulator of E.
View Article and Find Full Text PDFL-homoserine is a pivotal intermediate in the carbon and nitrogen metabolism of However, this non-canonical amino acid cannot be used as a nitrogen source for growth. Furthermore, growth of this bacterium in a synthetic media is potently inhibited by L-homoserine. To understand this dual effect, an adapted laboratory evolution (ALE) was applied, which allowed the isolation of a strain able to grow with L-homoserine as the nitrogen source and was, at the same time, desensitized to growth inhibition by this amino acid.
View Article and Find Full Text PDFThe development of protein and microorganism engineering have led to rising expectations of biotechnology in the design of emerging biomaterials, putatively of high interest to reduce our dependence on fossil carbon resources. In this way, cellulose, a renewable carbon based polysaccharide and derived products, displays unique properties used in many industrial applications. Although the functionalization of cellulose is common, it is however limited in terms of number and type of functions.
View Article and Find Full Text PDFWe have developed a robust workflow to measure high-resolution fluxotypes (metabolic flux phenotypes) for large strain libraries under fully controlled growth conditions. This was achieved by optimizing and automating the whole high-throughput fluxomics process and integrating all relevant software tools. This workflow allowed us to obtain highly detailed maps of carbon fluxes in the central carbon metabolism in a fully automated manner.
View Article and Find Full Text PDFOverflow metabolism refers to the production of seemingly wasteful by-products by cells during growth on glucose even when oxygen is abundant. Two theories have been proposed to explain acetate overflow in - global control of the central metabolism and local control of the acetate pathway - but neither accounts for all observations. Here, we develop a kinetic model of metabolism that quantitatively accounts for observed behaviours and successfully predicts the response of to new perturbations.
View Article and Find Full Text PDF