Purpose: To fabricate organic photovoltaic (OPV) cells with nanometric active layers sensitive to ionizing radiation and measure their dosimetric characteristics in clinical x-ray beams in the diagnostic tube potential range of 60-150 kVp.
Methods: Experiments were designed to optimize the detector's x-ray response and find the best parameter combination by changing the active layer thickness and the area of the electrode. The OPV cell consisted of poly (3-hexylthiophene-2,5-diyl): [6,6]-phenyl C61 butyric acid methyl ester photoactive donor and acceptor semiconducting organic materials sandwiched between an aluminum electrode as an anode and an indium tin oxide electrode as a cathode.
We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter.
View Article and Find Full Text PDFMonte Carlo simulations were carried out to calculate dose in a knee phantom from a D-D-reaction-based Beam Shaping Assembly (BSA) for Boron Neutron Capture Synovectomy (BNCS). The BSA consists of a D(d,n)-reaction-based neutron source enclosed inside a polyethylene moderator and graphite reflector. The polyethylene moderator and graphite reflector sizes were optimized to deliver the highest ratio of thermal to fast neutron yield at the knee phantom.
View Article and Find Full Text PDF