Publications by authors named "B Elder"

Background And Purpose: In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.

View Article and Find Full Text PDF

Background And Purpose: Idiopathic normal pressure hydrocephalus (iNPH) is a cerebrospinal fluid (CSF) dynamics disorder as evidenced by the delayed ascent of radiotracers over the cerebral convexity on radionuclide cisternography. However, the exact mechanism causing this disruption remains unclear. Elucidating the pathophysiology of iNPH is crucial, as it is a treatable cause of dementia.

View Article and Find Full Text PDF

Objective: Hounsfield units (HUs) may better predict biomechanical complications of instrumented fusion than conventional bone quality measures. Typically, noncontrast axial slices are used. This study aims to address the influence of reconstruction plane and contrast administration on measured HUs in patients undergoing lumbar spine imaging.

View Article and Find Full Text PDF
Article Synopsis
  • - Hypertrophic cardiomyopathy (HCM) was traditionally seen as caused by rare, high-risk single-gene changes, but new research indicates common low-risk variants (LowSVs) also play a significant role in the disease.
  • - In a study of over 6000 patients, 12 LowSVs were discovered, which are relatively common in the general population and more prevalent in HCM patients, suggesting they may influence disease severity and risk.
  • - While LowSVs alone are linked to a later onset of HCM and fewer complications, their presence alongside more severe genetic variants increases health risks significantly.
View Article and Find Full Text PDF

There is a significant clinical need to develop effective treatments for bone defects in patients with diabetes mellitus (DM), as they are at higher risk of fractures and impaired healing. Guided bone tissue engineering using biocompatible and biodegradable polymers is a promising approach. However, current diabetic bone regenerative therapies often fail due to the accumulation of advanced glycation products, which can affect the integration of traditional tissue engineering scaffolds with native bone.

View Article and Find Full Text PDF