Polycystic Ovary Syndrome (PCOS) is a complex hormonal disorder that is associated with heightened metabolic risks. While oxidative stress (OS) is known to play a role in PCOS, the precise nature of the relationship between PCOS and increased OS remains not entirely understood. Combined oral contraceptives (COCs) are the first-line treatment to regulate menstrual cycles and androgen levels, but their impact on oxidative stress requires further study.
View Article and Find Full Text PDFPolycystic ovary syndrome (PCOS) is a common endocrine disorder that affects women of reproductive age. Many women with PCOS have been found to have an unbalanced diet and deficiencies in essential nutrients. This study aimed to assess the levels of folate and vitamin B12 (B12) and their relationship with metabolic factors in women with PCOS.
View Article and Find Full Text PDFA high-fat diet (HFD) during pregnancy promotes fat accumulation and reduces docosahexaenoic acid (DHA) levels in the liver of the offspring at postnatal ages, which can depend on fetal sex. However, the prenatal mechanisms behind these associations are still unclear. Thus, we analyzed if an HFD alters DHA content and the expression of molecules related to fatty acid (FA) metabolism in the fetal liver.
View Article and Find Full Text PDFThe transgenerational maternal effects of polycystic ovary syndrome (PCOS) in female progeny are being revealed. As there is evidence that a male equivalent of PCOS may exists, we ask whether sons born to mothers with PCOS (PCOS-sons) transmit reproductive and metabolic phenotypes to their male progeny. Here, in a register-based cohort and a clinical case-control study, we find that PCOS-sons are more often obese and dyslipidemic.
View Article and Find Full Text PDFRodent models in rats, mice, and guinea pigs have been extremely helpful to gain insight into pregnancy physiology and pathologies-related. Moreover, they have allowed understanding the mechanism that links an adverse intrauterine environment with the origin of adult disease. In this regard, the effects of diverse maternal conditions, such as undernutrition, obesity, hypoxia, and hyperandrogenism on placental function and its long-term consequences for the offspring, have been widely analyzed through rodents models involving dietary manipulations, modifications in environmental oxygen, surgical and pharmacological procedures that reduce uteroplacental blood flow and administrations of exogenous testosterone and dihydrotestosterone (DHT) mimicking maternal androgen excess.
View Article and Find Full Text PDF