Publications by authors named "B E Neuenschwander"

Current clinical methods of bone health assessment depend to a great extent on bone mineral density (BMD) measurements. However, these methods only act as a proxy for bone strength and are often only carried out after the fracture occurs. Besides BMD, composition and tissue-level mechanical properties are expected to affect the whole bone's strength and toughness.

View Article and Find Full Text PDF

We study the properties of laser-induced periodic surface structures (LIPSS) formed on titanium-doped diamond-like nanocomposite (DLN) a-C:H:Si:O films during ablation processing with linearly-polarized beams of a visible femtosecond laser (wavelength 515 nm, pulse duration 320 fs, pulse repetition rates 100 kHz-2 MHz, scanning beam velocity 0.05-1 m/s). The studies are focused on (i) laser ablation characteristics of Ti-DLN films at different pulse frequencies and constant fluence close to the ablation threshold, (ii) effects of the polarization angle rotation on the properties of low spatial frequency LIPSS (LSFL), and (iii) nanofriction properties of the 'rotating' LIPSS using atomic force microscopy (AFM) in a lateral force mode.

View Article and Find Full Text PDF

Preclinical studies often require animal models for in vivo experiments. Particularly in dental research, pig species are extensively used due to their anatomical similarity to humans. However, there is a considerable knowledge gap on the multiscale morphological and mechanical properties of the miniature pigs' jawbones, which is crucial for implant studies and a direct comparison to human tissue.

View Article and Find Full Text PDF

In the paper, we study the formation of laser-induced periodic surface structures (LIPSS) on diamond-like nanocomposite (DLN) a-C:H:Si:O films during nanoscale ablation processing at low fluences-below the single-pulse graphitization and spallation thresholds-using an IR fs-laser (wavelength 1030 nm, pulse duration 320 fs, pulse repetition rate 100 kHz, scanning beam velocity 0.04-0.08 m/s).

View Article and Find Full Text PDF

Background: The call for patient-focused drug development is loud and clear, as expressed in the twenty-first Century Cures Act and in recent guidelines and initiatives of regulatory agencies. Among the factors contributing to modernized drug development and improved health-care activities are easily interpretable measures of clinical benefit. In addition, special care is needed for cancer trials with time-to-event endpoints if the treatment effect is not constant over time.

View Article and Find Full Text PDF