It is well known that CpG dinucleotide steps in DNA, which are highly methylated at the 5-position of cytosine (meC) in human tissues, exhibit a disproportionate number of mutations within certain codons of the p53 gene. There is ample published evidence indicating that the reactivity of guanine with anti-B[a]PDE (a metabolite of the environmental carcinogen benzo[a]pyrene) at CpG mutation hot spots is enhanced by the methylation of the cytosine residue flanking the target guanine residue on the 5'-side. In this work we demonstrate that such a methylation can also dramatically affect the conformational characteristics of an adduct derived from the reaction of one of the two enantiomers of anti-B[a]PDE with the exocyclic amino group of guanine ([BP]G adduct).
View Article and Find Full Text PDFAn extensive conformational analysis has been carried out for two diastereoisomeric pairs of model estrogen quinone-derived DNA adducts, N6-(2-hydroxyestron-6(alpha,beta)-yl)-2'-deoxyadenosine (2-OHE1-6(alpha,beta)-N6-dA) and N2-(2-hydroxyestron-6(alpha,beta)-yl)-2'-deoxyguanosine (2-OHE1-6(alpha,beta)-N2-dG), in a B-DNA duplex and at a primer-template junction in a pol alpha family DNA polymerase. In vitro primer extension studies in pol alpha [Terashima, I., et al.
View Article and Find Full Text PDFThe pyridyloxobutylating agents derived from metabolically activated tobacco-specific nitrosamines can covalently modify guanine bases in DNA at the O(6) position. The adduct formed, O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine ([POB]dG), results in mutations that can lead to tumor formation, posing a significant cancer risk to humans exposed to tobacco smoke. A combined NMR-molecular mechanics computational approach was used to determine the solution structure of the [POB]dG adduct within an 11mer duplex sequence d(CCATAT-[POB]G-GCCC).
View Article and Find Full Text PDFIn the Ames Salmonella typhimurium reversion assay 1,6- and 1,8-dinitropyrenes (1,6- and 1,8-DNPs) are much more potent mutagens than 1-nitropyrene (1-NP). Genetic experiments established that certain differences in the metabolism of the DNPs, which in turn result in increased DNA adduction, play a role. It remained unclear, however, if the DNP adducts, N-(guanin-8-yl)-1-amino-6 ()-nitropyrene (Gua-C8-1,6-ANP and Gua-C8-1,8-ANP), which contain a nitro group on the pyrene ring covalently linked to the guanine C8, are more mutagenic than the major 1-NP adduct, N-(guanin-8-yl)-1-aminopyrene (Gua-C8-AP).
View Article and Find Full Text PDFMany carcinogens exert their cancer-causing effects by reacting with DNA either directly or following metabolic activation, resulting in covalently linked combination molecules known as carcinogen-DNA adducts. The presence of such lesions in the genome increases the error frequency of the replication machinery, causing mutations that contribute to the initiation and progression of cancer. Cellular DNA repair pathways remove carcinogen adducts from DNA, thus averting the mutagenic potential of many DNA lesions by reducing their presence in the genome.
View Article and Find Full Text PDF