Publications by authors named "B E Bintz"

Little is known about the underlying mechanisms that contribute to the persistence and degradation of DNA within soil. The goals of this study are to determine the duration of mitochondrial DNA (mtDNA) and nuclear DNA (nuDNA) persistence in soils enriched by surface-level human decomposition and to better understand the contribution of environmental factors. The surface-level decomposition of three human cadavers was documented over 11 weeks.

View Article and Find Full Text PDF

Recent structural studies of the bacteriophage T7 DNA replication system have shed light on how multiple proteins assemble to copy two antiparallel DNA strands. In T7, acidic C-terminal tails of both the primase-helicase and single-stranded DNA binding protein bind to two basic patches on the DNA polymerase to aid in replisome assembly, processivity, and coordinated DNA synthesis. Although these electrostatic interactions are essential for DNA replication, the molecular details for how these tails bind the polymerase are unknown.

View Article and Find Full Text PDF

Methods: Human ARPE-19 cells engineered to secrete high levels of the glial cell line-derived neurotrophic factor (GDNF) were encapsulated into hollow fiber membranes. The devices were implanted into the rat striatum 1 week prior to striatal quinolinic acid injections. Animals were evaluated using a battery of validated motor tests, and histology was performed to determine the extent of GDNF diffusion and associated prevention of neuronal cell loss and behavioral deficits.

View Article and Find Full Text PDF

In forensic casework, compromised samples often possess limited or degraded nuclear DNA, rendering mitochondrial DNA a more feasible option for forensic DNA analyses. The emergence of massively parallel sequencing (MPS) has enabled the recovery of extensive sequence information from very low quantities of DNA. We have developed a multiplex PCR method that amplifies the complete mitochondrial genome in a range of forensically relevant samples including single cells, cremated remains, bone, maggot and hairs isolated from dust bunnies.

View Article and Find Full Text PDF

Hydrogel microcapsules have been used for decades to encapsulate cells and treat diseases ranging from neurodegenerative disorders to more systemic applications like Type I Diabetes. This cell encapsulation modality has been developed through more cumulative experiments than perhaps any other, owing to the relative ease of accessing the required materials, the commercial availability of droplet-generating instrumentation, and the mild microenvironment and unique permeability properties of hydrogels that are difficult to attain with alternative encapsulation systems employing thermoplastic materials. Because of their size and shape, microcapsules have an inherent advantage over macroencapsulation devices due to the more favorable surface area to volume ratio, which allows for greater efficiency in the amount of cellular cargo that is entrapped and enhanced nutrient exchange and efflux of secreted products.

View Article and Find Full Text PDF