Publications by authors named "B Dufy"

Rat lactotrope cells in primary cultures have a higher intracellular Cl- concentration ([Cl-]i) than that predicted by a passive distribution across the membrane. This suggests that active cellular mechanisms ensure this ionic equilibrium. In this study, we examined the interactions between pHi, [Cl-]i regulation and cell energetics.

View Article and Find Full Text PDF

Rat lactotrope cells in primary culture exhibit physiological properties closely associated with chloride ions (Cl-) homeostasis. In this work, we studied the regulation of intracellular Cl- concentrations ([Cl-]i) and its relation to the membrane resting potential, using a combination of electrophysiology and spectrofluorimetry. Variations in [Cl-]i resulting from the patch clamp technique, pHi, antagonists of Cl(-)-Ca(2+)-dependent channels, an anion exchanger antagonist, and an antagonist of K(+)-Cl- cotransport were considered with respect to their involvement in membrane potential.

View Article and Find Full Text PDF

We have used the human calcium- and temperature-dependent (HaCaT) keratinocyte cell line to elucidate mechanisms of switching from a proliferating to a differentiating state. When grown in low calcium medium (<0.1 mM) HaCaT cells proliferate.

View Article and Find Full Text PDF

Dopamine is a crucial factor in basal ganglia functioning. In current models of basal ganglia, dopamine is postulated to act on striatal neurons. However, it may also act on the subthalamic nucleus (STN), a key nucleus in the basal ganglia circuit.

View Article and Find Full Text PDF

The subthalamic nucleus (STN) influences the output of the basal ganglia, thereby interfering with motor behavior. The main inputs to the STN are GABAergic. We characterized the GABA(A) receptors expressed in the STN and investigated the response of subthalamic neurons to the activation of GABA(A) receptors.

View Article and Find Full Text PDF