Publications by authors named "B Ding"

Tumor immunotherapy has been widely used clinically, but it is still hindered by weak antitumor immunity and immunosuppressive tumor microenvironment (TME). Here, a kind of simple disodium hydrogen phosphate nanoparticle (Na2HPO4 NP) is prepared to "accelerate" tumor immunotherapy by "increasing throttle" and "relaxing brake" simultaneously. The obtained Na2HPO4 NPs release a large amount of Na+ and HPO42- ions within tumor cells, thereby activating the caspase 1/GSDMD-mediated pyroptosis pathway to achieve immune activation.

View Article and Find Full Text PDF

Nucleic acid, as a carrier of genetic information, has been widely employed as a building block for the construction of versatile nanostructures with pre-designed sizes and shapes through complementary base pairing. With excellent programmability, addressability, and biocompatibility, nucleic acid nanostructures are extensively applied in biomedical researches, such as bio-imaging, bio-sensing, and drug delivery. Notably, the original gene-encoding capability of the nucleic acids themselves has been utilized in these structurally well-defined nanostructures.

View Article and Find Full Text PDF

Fermi resonance is a common phenomenon, and a hidden caveat exists in the applications of infrared probes, causing spectral complication and shorter vibrational lifetime. In this work, using the cyanotryptophan (CNTrp) side chain model compound 5-cyanoindole (CN-5CNI), we performed Fourier transform infrared spectroscopy (FTIR) and two-dimensional infrared (2D-IR) spectroscopy on unlabeled CN-5CNI and its isotopically labeled substituents (CN-5CNI, CN-5CNI, CN-5CNI) and demonstrated the existence of Fermi resonance in 5CNI. By constructing the Hamiltonian and simulating 2D-IR spectra, we show that the distinct Fermi resonance 2D-IR patterns in various isotope substituents are determined by the quantum mixing consequences at the = 1 state, as well as the = 2 state, where the Fermi coupling and anharmonicity play a crucial role.

View Article and Find Full Text PDF

The strength-ductility trade-off exists ubiquitously, especially in brittle intermetallic-containing multiple principal element alloys (MPEAs), where the intermetallic phases often induce premature failure leading to severe ductility reduction. Hierarchical heterogeneities represent a promising microstructural solution to achieve simultaneous strength-ductility enhancement. However, it remains fundamentally challenging to tailor hierarchical heterostructures using conventional methods, which often rely on costly and time-consuming processing.

View Article and Find Full Text PDF

Chemodynamic therapy (CDT) is a promising and potent therapeutic strategy for the treatment of cancer. We developed a DNA origami-based enzymatic cascade nanoreactor (DOECN) containing spatially well-organized Au nanoparticles and ferric oxide (FeO) nanoclusters for targeted delivery and inhibition of tumor cell growth. The DOECN can synergistically promote the generation of hydrogen peroxide (HO), consumption of glutathione, and creation of an acidic environment, thereby amplifying the Fenton-type reaction and producing abundant reactive oxygen species, such as hydroxyl radicals (•OH), for augmenting the CDT outcome.

View Article and Find Full Text PDF