Publications by authors named "B Dieny"

Cytotoxicity of nanoparticles is primarily assessed on cells grown in plastic culture plates, a mechanical environment that is a million times stiffer than most of the human tissues. Here we question whether nanoparticles cytotoxicity is sensitive to the stiffness of the extracellular environment. To this end, we compare the metabolic activity, the proliferation and death rates, and the motility of a glioblastoma cancer cell line and a fibroblast cell line exposed to gold-coated NiFe microdiscs when grown on a glass substrate or on a soft substrate whose mechanical properties are close to physiology.

View Article and Find Full Text PDF

Spintronic devices have recently attracted a lot of attention in the field of unconventional computing due to their non-volatility for short- and long-term memory, nonlinear fast response, and relatively small footprint. Here we demonstrate experimentally how voltage driven magnetization dynamics of dual free layer perpendicular magnetic tunnel junctions can emulate spiking neurons in hardware. The output spiking rate was controlled by varying the dc bias voltage across the device.

View Article and Find Full Text PDF

In nanomedicine, treatments based on physical mechanisms are more and more investigated and are promising alternatives for challenging tumor therapy. One of these approaches, called magneto-mechanical treatment, consists in triggering cell death the vibration of anisotropic magnetic particles, under a low frequency magnetic field. In this work, we introduce a new type of easily accessible magnetic microparticles (MMPs) and study the influence of their surface functionalization on their ability to induce such an effect, and its mechanism.

View Article and Find Full Text PDF

Diabetes is a major global health threat. Both academics and industry are striving to develop effective treatments for this disease. In this work, we present a new approach to induce insulin release from β-islet pancreatic cells (INS-1E) by mechanical stimulation.

View Article and Find Full Text PDF

An array of spin torque nano-oscillators (STNOs), coupled by dipolar interaction and arranged on a ring, has been studied numerically and analytically. The phase patterns and locking ranges are extracted as a function of the number N, their separation, and the current density mismatch between selected subgroups of STNOs. If [Formula: see text] for identical current densities through all STNOs, two degenerated modes are identified an in-phase mode (all STNOs have the same phase) and a splay mode (the phase makes a 2[Formula: see text] turn along the ring).

View Article and Find Full Text PDF