Exciton polaritons have been shown to be an optimal system in order to investigate the properties of bosonic quantum fluids. We report here on the observation of dark solitons in the wake of engineered circular obstacles and their decay into streets of quantized vortices. Our experiments provide a time-resolved access to the polariton phase and density, which allows for a quantitative study of instabilities of freely evolving polaritons.
View Article and Find Full Text PDFExciton-polariton condensation can be regarded as a self-organization phenomenon, where phase ordering is established among particles in the system. In such condensed systems, further ordering can occur in the particle density distribution, under particular experimental conditions. In this work we report on spontaneous pattern formation in a polariton condensate under nonresonant optical pumping.
View Article and Find Full Text PDFUsing an angle-resolved heterodyne four-wave-mixing technique, we probe the low momentum excitation spectrum of a coherent polariton gas. The experimental results are well captured by the Bogoliubov transformation which describes the transition from single particle excitations of a normal fluid to soundlike excitations of a superfluid. In a dense coherent polariton gas, we find all the characteristics of a Bogoliubov transformation, i.
View Article and Find Full Text PDFThe design of cost-effective standards for the quality of nano-objects is currently a key issue toward their massive use for optoelectronic applications. The observation by photoluminescence of narrow excitonic and biexcitonic emission lines in semiconductor nanowires is usually accepted as evidence for high structural quality. Here, we perform time-resolved cathodoluminescence experiments on isolated ZnO nanobelts grown by chemical vapor deposition.
View Article and Find Full Text PDFWe study the coherence and density modulation of a nonequilibrium exciton-polariton condensate in a one-dimensional valley with disorder. By means of interferometric measurements we evidence a modulation of the first-order coherence function and we relate it to a disorder-induced modulation of the condensate density, that increases as the pump power is increased. The nonmonotonic spatial coherence function is found to be the result of the strong nonequilibrium character of the one-dimensional system, in the presence of disorder.
View Article and Find Full Text PDF