We describe an ultra-compact setup for in situ X-ray diffraction on the inelastic X-ray scattering beamline ID20 at the European Synchrotron Radiation Facility. The main motivation for the design and construction of this setup is the increasing demand for on-the-fly sample characterization, as well as ease of navigation through a sample's phase diagram, for example subjected to high-pressure and/or high-temperature conditions. We provide technical details and demonstrate the performance of the setup.
View Article and Find Full Text PDFA supposedly nonmagnetic 5d^{1} double perovskite oxide is investigated by a combination of spectroscopic and theoretical methods, namely, resonant inelastic x-ray scattering, x-ray absorption spectroscopy, magnetic circular dichroism, and multiplet ligand-field calculations. We found that the large spin-orbit coupling admixes the 5d t_{2g} and e_{g} orbitals, covalency raises the 5d population well above the nominal value, and the local symmetry is lower than O_{h}. The obtained electronic interactions account for the finite magnetic moment of Os in this compound and, in general, of 5d^{1} ions.
View Article and Find Full Text PDFUnderstanding the nature of metal-ligand bonding is a major challenge in actinide chemistry. We present a new experimental strategy for addressing this challenge using actinide 34 resonant inelastic X-ray scattering (RIXS). Through a systematic study of uranium(IV) halide complexes, [UX], where X = F, Cl, or Br, we identify RIXS spectral satellites with relative energies and intensities that relate to the extent of uranium-ligand bond covalency.
View Article and Find Full Text PDFPhoto-electro-chemical (PEC) water splitting represents a promising technology towards an artificial photosynthetic device but many fundamental electronic processes, which govern long-term stability and energetics, are not yet fully understood. X-ray absorption spectroscopy (XAS), and particularly its high energy resolution fluorescence-detected (HERFD) mode, emerges as a powerful tool to study photo-excited charge carrier behavior under operating conditions. The established thin film device architecture of PEC cells provides a well-defined measurement geometry, but it puts many constraints on conducting XAS experiments.
View Article and Find Full Text PDFDirect nonoxidative coupling is a promising route for methane upgrading, yet its commercialization is hindered by the lack of efficient catalysts. Pt/CeO catalysts with isolated Pt species have attracted an increasing amount of interest in recent years. Herein, we studied the catalytic role and evolution of isolated Pt centers on CeO prepared by flame spray pyrolysis under the harsh reaction conditions of nonoxidative methane coupling.
View Article and Find Full Text PDF