Publications by authors named "B Derby"

Article Synopsis
  • The study focused on how adding 1 wt. lead (Pb) affects the plastic deformation and microstructure of pure copper (Cu) and Cu alloys, particularly at grain boundaries where Pb forms precipitates.
  • Various advanced techniques were used, including neutron diffraction and electron microscopy, to examine the behavior of these materials under stress at different scales.
  • Results showed that while the overall deformation responses were similar for both materials, the Cu-1Pb alloy had a higher dislocation density and the presence of lead significantly influenced local deformation, providing important insights for improving structural materials in engineering.
View Article and Find Full Text PDF

Heterogeneous microstructures in Cu-Mo-W alloy thin films formed by magnetron co-sputtering immiscible elements with concentrated compositions are characterized using scanning transmission electron microscopy (STEM) and nanoindentation. In this work, we modified the phase separated structure of a Cu-Mo immiscible system by adding W, which impedes surface diffusion during film growth. The heterogeneous microstructures in the Cu-Mo-W ternary system exhibited bicontinuous matrices and agglomerates composed of Mo(W)-rich phase.

View Article and Find Full Text PDF

Kidney podocytes and endothelial cells assemble a complex and dynamic basement membrane that is essential for kidney filtration. Whilst many components of this specialised matrix are known, the influence of fluid flow on its assembly and organisation remains poorly understood. Using the coculture of podocytes and glomerular endothelial cells in a low-shear stress, high-flow bioreactor, we investigated the effect of laminar fluid flow on the composition and assembly of cell-derived matrix.

View Article and Find Full Text PDF

Understanding the behavior of materials in multi-dimensional architectures composed of atomically thin two-dimensional (2D) materials and three-dimensional (3D) materials has become mandatory for progress in materials preparation various epitaxy techniques, such as van der Waals and remote epitaxy methods. We investigated the growth behavior of ZnO on monolayer MoS as a model system to study the growth of a 3D material on a 2D material, which is beyond the scope of remote and van der Waals epitaxy. The study revealed column-to-column alignment and inversion of crystallinity, which can be explained by combinatorial epitaxy, grain alignment across an atomically sharp interface, and a compliant substrate.

View Article and Find Full Text PDF

Monolayers of graphene oxide, assembled into densely packed sheets at an immiscible hexane/water interface, form transparent conducting films on polydimethylsiloxane membranes after reduction in hydroiodic acid (HI) vapor to reduced graphene oxide (rGO). Prestraining and relaxing the membranes introduces cracks in the rGO film. Subsequent straining opens these cracks and induces piezoresistivity, enabling their application as transparent strain gauges.

View Article and Find Full Text PDF