Publications by authors named "B Delhomme"

The enteric nervous system (ENS), often called the "second brain", plays a crucial role in regulating digestive functions. Dysfunctions of the ENS are associated with several diseases such as Parkinson's disease. Recent studies suggest that early digestive disorders, notably chronic constipation, may be early signs of this neurodegenerative disease.

View Article and Find Full Text PDF

The enteric nervous system (ENS), sometimes referred to as a "second brain" is a quasi-autonomous nervous system, made up of interconnected plexuses organized in a mesh-like network lining the gastrointestinal tract. Originally described as an actor in the regulation of digestion, bowel contraction, and intestinal secretion, the implications of the ENS in various central neuropathologies has recently been demonstrated. However, with a few exceptions, the morphology and pathologic alterations of the ENS have mostly been studied on thin sections of the intestinal wall or, alternatively, in dissected explants.

View Article and Find Full Text PDF

Fluorescence standards allow for quality control and for the comparison of data sets across instruments and laboratories in applications of quantitative fluorescence. For example, users of microscopy core facilities can expect a homogenous and time-invariant illumination and an uniform detection sensitivity, which are prerequisites for imaging analysis, tracking or fluorimetric pH or Ca -concentration measurements. Similarly, confirming the three-dimensional (3-D) resolution of optical sectioning microscopes calls for a regular calibration with a standardized point source.

View Article and Find Full Text PDF

Human inducible pluripotent stem cells (hiPSCs) hold a large potential for disease modeling. hiPSC-derived human astrocyte and neuronal cultures permit investigations of neural signaling pathways with subcellular resolution. Combinatorial cultures, and three-dimensional (3-D) embryonic bodies (EBs) enlarge the scope of investigations to multi-cellular phenomena.

View Article and Find Full Text PDF

BNC2 is an extremely conserved zinc finger protein with important functions in the development of craniofacial bones and male germ cells. Because disruption of the Bnc2 gene in mice causes neonatal lethality, the function of the protein in adult animals has not been studied. Until now BNC2 was considered to have a wider tissue distribution than its paralog, BNC1, but the precise cell types expressing Bnc2 are largely unknown.

View Article and Find Full Text PDF