Publications by authors named "B Dehmel"

Background: Primary hyperoxalurias (PHs) are rare genetic diseases that increase the endogenous level of oxalate, a waste metabolite excreted predominantly by the kidneys and also the gut. Treatments aim to improve oxalate excretion, or reduce oxalate generation, to prevent kidney function deterioration. Oxalobacter formigenes is an oxalate metabolizing bacterium.

View Article and Find Full Text PDF

In primary hyperoxaluria, increased hepatic oxalate production sometimes leads to severe nephrocalcinosis and early end-stage kidney disease. Oral administration of Oxalobacter formigenes (O. formigenes), an oxalate-degrading bacterium, is thought to derive oxalate from systemic sources by inducing net enteric oxalate secretion.

View Article and Find Full Text PDF

Primary hyperoxaluria type 1 (PH1) is a rare monogenic disorder characterized by excessive hepatic production of oxalate leading to recurrent nephrolithiasis, nephrocalcinosis, and progressive kidney damage, often requiring renal replacement therapy (RRT). Though systemic oxalate deposition is well-known, the natural history of PH1 during RRT has not been systematically described. In this study, we describe the clinical, laboratory, and echocardiographic features of a cohort of PH1 patients on RRT.

View Article and Find Full Text PDF

Background: In patients with primary hyperoxaluria (PH), endogenous oxalate overproduction increases urinary oxalate excretion, leading to compromised kidney function and often kidney failure. Highly elevated plasma oxalate (Pox) is associated with systemic oxalate deposition in patients with PH and severe chronic kidney disease (CKD). The relationship between Pox and estimated glomerular filtration rate (eGFR) in patients with preserved kidney function, however, is not well established.

View Article and Find Full Text PDF

Background: In primary hyperoxaluria Type 1 (PH1), endogenous oxalate overproduction significantly elevates urinary oxalate excretion, resulting in recurrent urolithiasis and/or progressive nephrocalcinosis and often early end-stage renal disease (ESRD). In ESRD, dialysis cannot sufficiently remove oxalate; plasma oxalate (Pox) increases markedly, inducing systemic oxalate deposition (oxalosis) and often death. Interventions to reduce Pox in PH1 subjects with ESRD could have significant clinical impact.

View Article and Find Full Text PDF