Publications by authors named "B De Reu"

Carbohydrate reserves play a vital role in plant survival during periods of negative carbon balance. Under a carbon-limited scenario, we expect a trade-offs between carbon allocation to growth, reserves, and defense. A resulting hypothesis is that carbon allocation to reserves exhibits a coordinated variation with functional traits associated with the 'fast-slow' plant economics spectrum.

View Article and Find Full Text PDF

Understanding the role of non-structural carbohydrates (NSC) in tree-level carbon cycling crucially depends on the availability of NSC data in a sufficient temporal resolution covering extreme conditions and seasonal peaks or declines. Chemical analytical methods should therefore get complemented by less extensive retrieval methods. To this end, we explored the potential of diffuse reflectance spectroscopy for estimating NSC contents at a set of 180 samples taken from leaves, roots, stems and branches of different tree species in different biogeographic regions.

View Article and Find Full Text PDF
Article Synopsis
  • The 'Global Spectrum of Plant Form and Function Dataset' includes mean values for six key vascular plant traits, essential for understanding plant variation.
  • This dataset aggregates around 1 million trait records from the TRY database and other sources, encompassing 92,159 species mean values across 46,047 species.
  • Comprehensive data quality management and validation ensure this is the largest and most reliable collection of empirical data on vascular plant traits available.
View Article and Find Full Text PDF

Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land-climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential.

View Article and Find Full Text PDF

Future global change scenarios predict a dramatic loss of biodiversity for many regions in the world, potentially reducing the resistance and resilience of ecosystem functions. Once before, during Plio-Pleistocene glaciations, harsher climatic conditions in Europe as compared to North America led to a more depauperate tree flora. Here we hypothesize that this climate driven species loss has also reduced functional diversity in Europe as compared to North America.

View Article and Find Full Text PDF