Cells obtained from chicken embryos are often preferred for in vitro studies. These cells, which easily adapt to rapid and continuous growth in the appropriate cell culture environment, are thought to be one of the effective methods in the investigation of leg diseases that are frequently observed in poultry. Leg diseases, especially affecting the joints in chickens, cause locomotor problems and adversely affect animal welfare.
View Article and Find Full Text PDFWhen dental pulp is exposed, it must be covered with a biocompatible material to form reparative dentine. The material used, besides being biocompatible, should have an ideal surface structure for the attachment, proliferation and differentiation of dental pulp stem cells. This study aimed to evaluate the porosity of the microstructures of four pulp capping materials using micro-computed tomography (micro-CT).
View Article and Find Full Text PDFBackground: The effects of whitening toothpastes containing nanohydroxyapatite on the surfaces of restorative materials are not well known. This study evaluated the changes in surface roughness and color of coffee-stained restorative materials after brushing with nanohydroxyapatite and other whitening toothpastes.
Methods: Disc-shaped specimens were formed using microhybrid, nanohybrid, and supra-nano-filled composite ( = 30) and stained with a coffee solution.
The study aims to evaluate the diagnostic performance of an artificial intelligence system based on deep learning for the segmentation of occlusal, proximal and cervical caries lesions on panoramic radiographs. The study included 504 anonymous panoramic radiographs obtained from the radiology archive of Inonu University Faculty of Dentistry's Department of Oral and Maxillofacial Radiology from January 2018 to January 2020. This study proposes Dental Caries Detection Network (DCDNet) architecture for dental caries segmentation.
View Article and Find Full Text PDFPurpose: This study aimed to compare the effects of the collagen-BioAggregate mixture (CBA-M) and collagen-BioAggregate composite (CBA-C) sponge as a scaffolding material on the reparative dentin formation.
Materials And Methods: CBA-C sponge (10:1 w/w) was obtained and characterized by Scanning Electron Microscopy (SEM) and Mercury Porosimetry. Cytotoxicity of the CBA-C sponge was tested by using the L929 mouse fibroblast cell line.