Publications by authors named "B D Petersen"

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF
Article Synopsis
  • Indigenous maize varieties from eastern North America have significantly influenced breeding programs, but their origins remain unclear.
  • Paleogenomic studies trace maize's journey to this region, indicating multiple migrations from Mexico, especially towards the northern U.S., including a notable path from the Southwest.
  • Analysis shows that ancient Ozark maize specimens exhibit a unique wx1 gene linked to starch metabolism, demonstrating how selective pressures shaped maize domestication and connecting these varieties to the Northern Flints, vital for today's commercial maize.
View Article and Find Full Text PDF

The potato family includes a highly diverse cultivar repertoire and has a high potential for nutritional yield improvement and refinement but must in line with other crops be adapted to biotic and abiotic stresses, for example, accelerated by climate change and environmental demands. The combination of pluripotency, high ploidy, and relative ease of protoplast isolation, transformation, and regeneration together with clonal propagation through tubers makes potato highly suitable for precise genetic engineering. Most potato varieties are tetraploid having a very high prevalence of length polymorphisms and small nucleotide polymorphisms between alleles, often complicating CRISPR-Cas editing designs and strategies.

View Article and Find Full Text PDF
Article Synopsis
  • - In xenotransplantation research, genetically modified pigs are crucial, with traditional methods like somatic cell nuclear transfer being lengthy and complex, prompting the need for more efficient gene editing techniques.
  • - The study explores the use of CRISPR/Cas9 and different delivery methods (electroporation vs. microinjection) to edit genes in pig zygotes, aiming to create triple-knock-out embryos targeting key porcine xenoantigens.
  • - Results showed that higher voltage during electroporation improved gene editing efficiency without significantly affecting embryo development, but mosaicism remained a common issue across all methods, highlighting the need for further optimization in genome editing approaches.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: A non-numeric value encountered

Filename: controllers/Author.php

Line Number: 219

Backtrace:

File: /var/www/html/application/controllers/Author.php
Line: 219
Function: _error_handler

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: A non-numeric value encountered

Filename: libraries/Pagination.php

Line Number: 413

Backtrace:

File: /var/www/html/application/controllers/Author.php
Line: 274
Function: create_links

File: /var/www/html/index.php
Line: 316
Function: require_once