Publications by authors named "B D Perchuk"

Cross-experiment comparisons in public data compendia are challenged by unmatched conditions and technical noise. The ADAGE method, which performs unsupervised integration with denoising autoencoder neural networks, can identify biological patterns, but because ADAGE models, like many neural networks, are over-parameterized, different ADAGE models perform equally well. To enhance model robustness and better build signatures consistent with biological pathways, we developed an ensemble ADAGE (eADAGE) that integrated stable signatures across models.

View Article and Find Full Text PDF

Interacting proteins typically coevolve, and the identification of coevolving amino acids can pinpoint residues required for interaction specificity. This approach often assumes that an interface-disrupting mutation in one protein drives selection of a compensatory mutation in its partner during evolution. However, this model requires a non-functional intermediate state prior to the compensatory change.

View Article and Find Full Text PDF

Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage.

View Article and Find Full Text PDF

Cell cycle transitions are often triggered by the proteolysis of key regulatory proteins. In Caulobacter crescentus, the G1-S transition involves the degradation of an essential DNA-binding response regulator, CtrA, by the ClpXP protease. Here, we show that another critical cell cycle regulator, SciP, is also degraded during the G1-S transition, but by the Lon protease.

View Article and Find Full Text PDF

Signal transduction proteins are often multi-domain proteins that arose through the fusion of previously independent proteins. How such a change in the spatial arrangement of proteins impacts their evolution and the selective pressures acting on individual residues is largely unknown. We explored this problem in the context of bacterial two-component signalling pathways, which typically involve a sensor histidine kinase that specifically phosphorylates a single cognate response regulator.

View Article and Find Full Text PDF